期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多分支RNN快速学习算法的混沌时间序列预测 被引量:6
1
作者 廖大强 印鉴 《计算机应用研究》 CSCD 北大核心 2015年第2期403-408,共6页
针对传统递归神经网络中出现的网络结构与计算复杂性,提出了使用多分支递归神经网络学习算法,并将其应用到混沌时间序列预测领域。首先缩减了部分冗余的分支,只保留了节点与自身之间以及节点与代表以后时刻的节点之间的分支;然后使用规... 针对传统递归神经网络中出现的网络结构与计算复杂性,提出了使用多分支递归神经网络学习算法,并将其应用到混沌时间序列预测领域。首先缩减了部分冗余的分支,只保留了节点与自身之间以及节点与代表以后时刻的节点之间的分支;然后使用规则导数代替惯用的一般偏导数,有助于同时反映权值对目标函数的直接影响和间接影响;最后使学习率根据学习情况进行动态调整,有助于加快学习算法的收敛速度。仿真实验表明,当参数的选取合理时,多分支递归神经网络能够达到较高的性能。 展开更多
关键词 混沌时间序列 多分支递归神经网络 BPTT学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部