Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structur...Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.展开更多
A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for...A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.展开更多
This paper extends CAATI (Computed Angle-of-Arrival Transient Imaging) technique of Multi-angle Swath Bathymetry Sidesean Sonar (MSBSS) into Multi-Beam Bathymetry Sonar (MBBS) and presents a new Multiple Sub-arr...This paper extends CAATI (Computed Angle-of-Arrival Transient Imaging) technique of Multi-angle Swath Bathymetry Sidesean Sonar (MSBSS) into Multi-Beam Bathymetry Sonar (MBBS) and presents a new Multiple Sub-array Beamspaee - CAATI (MSB-CAATI) algorithm. The method not only can achieve high resolution seafloor mapping in the whole wide swath, but also can work well in complex acoustic environments or geometries. Simulation results and processing results of sea-experiment data prove the validity and superiority of the algorithm.展开更多
This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed ...This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data.展开更多
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the compute...Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multi- channel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.展开更多
The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utili...The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utilizing backscatters and images from multibeam sonar for seabed type identification and most results are obtained. This paper has presented a focused review of several main methods and recent developments of seafloor classification utilizing multibeam sonar data or/and images. These are including the power spectral analysis methods, the texture analysis, traditional Bayesian classification theory and the most active neural network approaches.展开更多
Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration wa...Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these...MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.展开更多
This paper presented a novel semi blind adaptive beamforming algorithm specially designed for wideband coherent CDMA mobile communication systems with multiplexd control and data channels. The presented algorithm uses...This paper presented a novel semi blind adaptive beamforming algorithm specially designed for wideband coherent CDMA mobile communication systems with multiplexd control and data channels. The presented algorithm uses a parallel structure to exploit not only the desired user’s pseudo noise sequence but also the information from multiplexed pilot and data symbols, thus help achieve faster convergence and lower bit error rate. Monte Carlo simulation results verified the performance improvement in terms of BER.展开更多
Status and trends of biodiversity components in Republic of Macedonia are presented in this article. The monitoring of biodiversity components is conducted according to the criteria of SEBI 2010 (Streamlining Europea...Status and trends of biodiversity components in Republic of Macedonia are presented in this article. The monitoring of biodiversity components is conducted according to the criteria of SEBI 2010 (Streamlining European 2010 Biodiversity Indicators) for establishment of consistency at global, regional, EU and national indicator level. Two core segments of the Biodiversity Strategy and Action Plan of Republic of Macedonia are presented as well as the draft list of biodiversity indicators. Ecosystems and biotopes (presented with plant communities) are explained from which 30 Corine habitat classes are identified for the Republic of Macedonia. The number of endemic and endangered species from different taxonomic groups of vascular plants, fungi, fauna, and Emerald species with European importance are presented. Agro-biodiversity, structure of agriculture land, autochthonic breeds of domestic animals as well as the network of protected areas in Republic of Macedonia are presented. At the end conclusion remarks are given for future necessary activities at national and international level regarding monitoring and conservation of the biodiversity.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
We design a compact terahertz(THz) polarization beam splitter. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. Th...We design a compact terahertz(THz) polarization beam splitter. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The designed polarization beam splitter can split TE-polarized and TM-polarized THz waves into different propagation directions. The simulation results show that the extinction ratios are larger than 18.36 dB for TE polarization and 13.35 dB for TM polarization in the frequency range from 1.86 THz to 1.91 THz, respectively. The designed polarization beam splitter has the advantages of small size and compact structure with a total size of 4.825 mm×0.400 mm.展开更多
To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric ...To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods,enhanced electric fields occur around the nanorods.In addition,the effects of topological parameters of the nanorod-groove system,such as the oblique angle of the groove,displacement of the nanorod to the bottom of the groove,and separation between the nanorods on electric field distributions are also studied.These results may be helpful for designing substrates to obtain larger electric fields around nanorods.展开更多
基金financially supported by the National Natural Science Foundation of China(No.U1262207)the National Science and Technology Major Project of China(Nos.2011 ZX05023-005-005 and 2011 ZX05019-006)the PetroChina Innovation Foundation(No.2013D-5006-0303)
文摘Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.
文摘A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.
基金Supported by the Foundation of the Chinese Doctoral Science Grant No. 20050217010the Foundation of the Chinese Postdoctoral Science Grant No. LRB0025the Foundation of Underwater Acoustic Technology National Key Lab Grant No. 9140C200501060C20.
文摘This paper extends CAATI (Computed Angle-of-Arrival Transient Imaging) technique of Multi-angle Swath Bathymetry Sidesean Sonar (MSBSS) into Multi-Beam Bathymetry Sonar (MBBS) and presents a new Multiple Sub-array Beamspaee - CAATI (MSB-CAATI) algorithm. The method not only can achieve high resolution seafloor mapping in the whole wide swath, but also can work well in complex acoustic environments or geometries. Simulation results and processing results of sea-experiment data prove the validity and superiority of the algorithm.
文摘This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data.
基金supported by the National Major Scientific and Technological Special Project during the 13th Five-year Plan Period(No.2016ZX05045003-005)
文摘Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multi- channel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
文摘The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utilizing backscatters and images from multibeam sonar for seabed type identification and most results are obtained. This paper has presented a focused review of several main methods and recent developments of seafloor classification utilizing multibeam sonar data or/and images. These are including the power spectral analysis methods, the texture analysis, traditional Bayesian classification theory and the most active neural network approaches.
基金supported by the National Special Fund of China(No.2011ZX05035-001-006HZ,2011ZX05008-006-22,2011ZX05049-01-02,and 2011ZX05019-003)the National Natural Science Foundation of China(No.41104084)the PetroChina Innovation Foundation(No.2011D-5006-0303)
文摘Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
文摘MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.
文摘This paper presented a novel semi blind adaptive beamforming algorithm specially designed for wideband coherent CDMA mobile communication systems with multiplexd control and data channels. The presented algorithm uses a parallel structure to exploit not only the desired user’s pseudo noise sequence but also the information from multiplexed pilot and data symbols, thus help achieve faster convergence and lower bit error rate. Monte Carlo simulation results verified the performance improvement in terms of BER.
文摘Status and trends of biodiversity components in Republic of Macedonia are presented in this article. The monitoring of biodiversity components is conducted according to the criteria of SEBI 2010 (Streamlining European 2010 Biodiversity Indicators) for establishment of consistency at global, regional, EU and national indicator level. Two core segments of the Biodiversity Strategy and Action Plan of Republic of Macedonia are presented as well as the draft list of biodiversity indicators. Ecosystems and biotopes (presented with plant communities) are explained from which 30 Corine habitat classes are identified for the Republic of Macedonia. The number of endemic and endangered species from different taxonomic groups of vascular plants, fungi, fauna, and Emerald species with European importance are presented. Agro-biodiversity, structure of agriculture land, autochthonic breeds of domestic animals as well as the network of protected areas in Republic of Macedonia are presented. At the end conclusion remarks are given for future necessary activities at national and international level regarding monitoring and conservation of the biodiversity.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
基金supported by the National Natural Science Foundation of China(Nos.61379024 and 61131005)the Zhejiang Provincial Outstanding Youth Foundation(No.LR12F05001)
文摘We design a compact terahertz(THz) polarization beam splitter. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The designed polarization beam splitter can split TE-polarized and TM-polarized THz waves into different propagation directions. The simulation results show that the extinction ratios are larger than 18.36 dB for TE polarization and 13.35 dB for TM polarization in the frequency range from 1.86 THz to 1.91 THz, respectively. The designed polarization beam splitter has the advantages of small size and compact structure with a total size of 4.825 mm×0.400 mm.
基金supported by the National Natural Science Foundation of China (Grant No. 11004160)
文摘To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods,enhanced electric fields occur around the nanorods.In addition,the effects of topological parameters of the nanorod-groove system,such as the oblique angle of the groove,displacement of the nanorod to the bottom of the groove,and separation between the nanorods on electric field distributions are also studied.These results may be helpful for designing substrates to obtain larger electric fields around nanorods.