期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多分类CNN的胶质母细胞瘤多模态MR图像分割 被引量:9
1
作者 赖小波 许茂盛 徐小媚 《电子学报》 EI CAS CSCD 北大核心 2019年第8期1738-1747,共10页
为提高胶质母细胞瘤(GBM)多模态磁共振(MR)图像中各肿瘤子区域分割的准确性,提出一种多分类卷积神经网络(CNN)的GBM多模态MR图像自动分割算法.首先在98%缩尾处理和配准GBM多模态MR图像后,利用N4ITK法校正偏移场;其次构建一个主要由4个... 为提高胶质母细胞瘤(GBM)多模态磁共振(MR)图像中各肿瘤子区域分割的准确性,提出一种多分类卷积神经网络(CNN)的GBM多模态MR图像自动分割算法.首先在98%缩尾处理和配准GBM多模态MR图像后,利用N4ITK法校正偏移场;其次构建一个主要由4个卷积层、2个池化层和2个全连接层组成的多分类CNN模型,训练后预分割GBM多模态MR图像,将体素分为5类不同的标签;最后移除所有小于200体素的假阳性区域,中值滤波后获得最终分割结果.以Dice相似性系数DSC、阳性预测值PPV和平均Hausdorff距离AHD为评价指标,利用所提出的算法对F-C-GBM数据集中整个肿瘤组织进行分割,获得的DSC、PPV、AHD分别为0.889±0.087、0.859±0.127和1.923.结果表明,该算法能有效提高GBM多模态MR图像分割的性能,可望有临床应用前景. 展开更多
关键词 胶质母细胞瘤 多模态磁共振图像 自动分割 多分类卷积神经网络 图像块
下载PDF
Multiclass classification based on a deep convolutional network for head pose estimation 被引量:3
2
作者 Ying CAI Meng-long YANG Jun LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第11期930-939,共10页
Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D... Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D face images. We design an effective and simple method to roughly crop the face from the input image, maintaining the individual-relative facial features ratio. The method can be used in various poses. Then two convolutional neural networks are set up to train the head pose classifier and then compared with each other. The simpler one has six layers. It performs well on seven yaw poses but is somewhat unsatisfactory when mixed in two pitch poses. The other has eight layers and more pixels in input layers. It has better performance on more poses and more training samples. Before training the network, two reasonable strategies including shift and zoom are executed to prepare training samples. Finally, feature extraction filters are optimized together with the weight of the classification component through training, to minimize the classification error. Our method has been evaluated on the CAS-PEAL-R1, CMU PIE, and CUBIC FacePix databases. It has better performance than state-of-the-art methods for head pose estimation. 展开更多
关键词 Head pose estimation Deep convolutional neural network Multiclass classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部