期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于遗传算法的多分类器融合模型在信用评估中的应用 被引量:7
1
作者 叶强 张洁 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1504-1505,1536,共3页
为探讨基于遗传算法的多分类器融合模型,并基于多分类器融合技术,建立新的客户信用分类模型,该模型通过使用分类融合器,将多个单分类器得到的客户信用评估结果进行合并,从而综合不同分类器的局部优势,提高分类性能.采用线性分类融合器,... 为探讨基于遗传算法的多分类器融合模型,并基于多分类器融合技术,建立新的客户信用分类模型,该模型通过使用分类融合器,将多个单分类器得到的客户信用评估结果进行合并,从而综合不同分类器的局部优势,提高分类性能.采用线性分类融合器,并通过遗传算法对分类融合器进行优化.实验表明,该方法在客户信用评估中的效果明显优于传统的运用单个分类器的方法. 展开更多
关键词 多分类器融合模型 遗传算法 信用评估
下载PDF
基于增量式学习的数据流实时分类模型 被引量:5
2
作者 孙娜 郭延锋 《计算机工程与设计》 CSCD 北大核心 2012年第11期4225-4229,共5页
传统数据挖掘方法,主要针对静态数据进行挖掘,而对数据流挖掘往往失效。为了解决数据流的数据挖掘问题,提出一种通过改变传统支持向量机增量式学习方法,利用轮转式结构将多分类器按照数据流时间顺序进行组合,并且通过对分类器的优化,可... 传统数据挖掘方法,主要针对静态数据进行挖掘,而对数据流挖掘往往失效。为了解决数据流的数据挖掘问题,提出一种通过改变传统支持向量机增量式学习方法,利用轮转式结构将多分类器按照数据流时间顺序进行组合,并且通过对分类器的优化,可以提高模型对数据流分类的准确率并减少训练时间消耗。实验结果表明,该模型在保证学习精度和推广能力的同时,提高了训练速度,适合于数据流在线分类和在线学的问题。 展开更多
关键词 增量式学习 支持向量机 网络异常检测 概念漂移 多分类器模型
下载PDF
RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD 被引量:1
3
作者 Zhang Li Luo Jianhua Yang Suying 《Journal of Electronics(China)》 2009年第3期407-411,共5页
In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are... In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem. 展开更多
关键词 Neural network classifier Dynamic threshold Forecasting Box office revenue
下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
4
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部