期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于多分类概率输出的变压器故障诊断方法 被引量:22
1
作者 毕建权 鹿鸣明 +2 位作者 郭创新 王逸飞 刘潇洋 《电力系统自动化》 EI CSCD 北大核心 2015年第5期88-93,100,共7页
多分类概率输出方法可用于变压器故障诊断,其分类效果较好并能提供概率信息。针对现有基于支持向量机(SVM)的诊断方法在特征不明显条件下有误分类的情况,提出了一种基于多分类概率输出的变压器故障诊断方法。此方法引入Sigmoid函数将SV... 多分类概率输出方法可用于变压器故障诊断,其分类效果较好并能提供概率信息。针对现有基于支持向量机(SVM)的诊断方法在特征不明显条件下有误分类的情况,提出了一种基于多分类概率输出的变压器故障诊断方法。此方法引入Sigmoid函数将SVM决策函数输出映射为二分类概率输出,然后综合多个二分类概率输出结果,求解一个凸二次规划问题实现多分类概率输出。此方法可以得到发生不同类型故障的可能性,即故障类别概率,进一步分析后给出诊断结论。算例分析表明,此方法在继承了SVM故障诊断方法优点的基础上,提供了概率信息,对现有SVM方法误诊断样本也能给出可能存在的故障,弥补了现有SVM方法在变压器故障特征不明显条件下的不足。 展开更多
关键词 变压器故障诊断 支持向量机 油中溶解气体分析 多分类概率输出
下载PDF
一种基于BP神经网络的属性重要性计算方法 被引量:28
2
作者 潘庆先 董红斌 +2 位作者 韩启龙 王莹洁 丁蕊 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第1期18-25,共8页
人工神经网络学习作为机器学习的重要方式,在人工智能、模式识别、图像处理等领域已成功应用;BP网络作为神经网络学习的精华,它利用误差反传的方式不断修正权重以达到最佳拟合.多属性决策问题是决策理论研究领域的热点,当研究的问题涉... 人工神经网络学习作为机器学习的重要方式,在人工智能、模式识别、图像处理等领域已成功应用;BP网络作为神经网络学习的精华,它利用误差反传的方式不断修正权重以达到最佳拟合.多属性决策问题是决策理论研究领域的热点,当研究的问题涉及多个属性时,需要分析各属性的重要程度,即属性的权重.针对多分类输出结果的多输入属性相关性和重要性问题,提出了利用BP神经网络计算复杂输入属性的重要性方法;并对神经网络的节点数量、网络层数、学习策略、学习因子等进行研究,建立了适合属性重要性计算的BP神经网络模型;以烟台大学学生评教数据作为具体实例,利用k-fold方法验证其可行性和有效性. 展开更多
关键词 BP神经网络 属性重要性 多分类输出 学生评教
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部