期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MANet的三维点云特征提取方法研究 被引量:4
1
作者 王宝乐 霍占强 《计算机工程与应用》 CSCD 北大核心 2022年第19期267-275,共9页
在三维点云数据特征提取过程中,点云数据本身的稀疏性和不规则性会影响输入数据的全局特征表示,且现有方法未考虑不同特征通道的重要性差异,不利于点云特征的全局优化。提出一种基于多分组表征和注意力机制的MANet网络进行三维点云特征... 在三维点云数据特征提取过程中,点云数据本身的稀疏性和不规则性会影响输入数据的全局特征表示,且现有方法未考虑不同特征通道的重要性差异,不利于点云特征的全局优化。提出一种基于多分组表征和注意力机制的MANet网络进行三维点云特征描述。为获得完整的点云特征信息,将点云数据输入多分组表征模块获得初始点云特征。为学习点云不同通道的重要性,引入新的通道注意力机制强调对特征表示重要的通道,抑制不重要的通道,进一步优化特征表示。将优化后的特征输入点云分类网络,实验结果表明,多分组表征可以感知局部信息,注意力机制能够优化全局特征表示,所提方法能够对点云数据进行有效学习,有助于提高点云分类的鲁棒性和准确率。在ModelNet10/40分类数据集上总体准确率(overall accuracy)分别达到95.1%和92.5%,在ScanNet和SHREC15数据集上总体准确率分别为78.6%和97.2%,上述结果均优于PointNet++网络. 展开更多
关键词 三维点云 特征提取 多分组表征 注意力机制 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部