为解决电能质量扰动的分类问题,利用多分辨奇异值分解(Singular Value Decomposition, SVD)的信号逐层分解方式,提出基于多分辨SVD包与随机森林(Multi-Resolution SVD and Random Forest, MRSVD-RF)的电能质量扰动分类方法。通过实验证...为解决电能质量扰动的分类问题,利用多分辨奇异值分解(Singular Value Decomposition, SVD)的信号逐层分解方式,提出基于多分辨SVD包与随机森林(Multi-Resolution SVD and Random Forest, MRSVD-RF)的电能质量扰动分类方法。通过实验证明了该算法对单一和复合电能质量信号的分类效果明显优于分解结构相似的基于的小波包的信号分解方式,比较了分类器模型的选择和特征提取数量对算法性能的影响。展开更多
提出多分辨奇异值分解(Multi-resolution singular value decomposition,MRSVD)的概念,基于矩阵二分递推构造原理,利用奇异值分解(Singular value decomposition,SVD)获得具有不同分辨率的近似和细节信号,以多分辨率来展现信号不同层次...提出多分辨奇异值分解(Multi-resolution singular value decomposition,MRSVD)的概念,基于矩阵二分递推构造原理,利用奇异值分解(Singular value decomposition,SVD)获得具有不同分辨率的近似和细节信号,以多分辨率来展现信号不同层次的概貌和细部特征。给出MRSVD的分解和重构算法,并从理论上证明这种分解方式的多分辨分析特性。研究结果表明,MRSVD可以精确地检测出信号中的奇异点位置,克服小波检测时的奇异点偏移缺陷,并具有优良的消噪能力,可实现零相移消噪,此外还具有微弱故障特征提取能力,在对一个轴承振动信号的处理中,提取到其中隐藏的周期性冲击特征,实现对轴承损伤的准确诊断。相应地与小波变换结果进行比较,证明MRSVD在信号处理和故障诊断领域是一种很有应用前景的方法。展开更多
文摘长波地波传播时延是决定陆基导航定位系统精度的关键,时域有限差分(Finite Difference-Time Domain,FDTD)方法可以提高其精度。但是FDTD方法在计算长距离的模型问题时迭代次数随之增多导致数值计算误差变大。主要通过基于圆柱坐标系下采用具有紧支撑特性的二阶矩Daubechies小波函数为尺度函数的时域多分辨分析(Multiresolution Time Domain,MRTD)方法来提高数值计算精度。随后对MRTD方法进行色散分析,最后将该方法应用于低频地波的传播预测中,提取观测点的衰减因子相位,与使用FDTD数值算法得到的结果进行对比,结果表明:MRTD方法可以在保持精度的前提下用时比FDTD更短。
文摘为解决电能质量扰动的分类问题,利用多分辨奇异值分解(Singular Value Decomposition, SVD)的信号逐层分解方式,提出基于多分辨SVD包与随机森林(Multi-Resolution SVD and Random Forest, MRSVD-RF)的电能质量扰动分类方法。通过实验证明了该算法对单一和复合电能质量信号的分类效果明显优于分解结构相似的基于的小波包的信号分解方式,比较了分类器模型的选择和特征提取数量对算法性能的影响。
文摘提出多分辨奇异值分解(Multi-resolution singular value decomposition,MRSVD)的概念,基于矩阵二分递推构造原理,利用奇异值分解(Singular value decomposition,SVD)获得具有不同分辨率的近似和细节信号,以多分辨率来展现信号不同层次的概貌和细部特征。给出MRSVD的分解和重构算法,并从理论上证明这种分解方式的多分辨分析特性。研究结果表明,MRSVD可以精确地检测出信号中的奇异点位置,克服小波检测时的奇异点偏移缺陷,并具有优良的消噪能力,可实现零相移消噪,此外还具有微弱故障特征提取能力,在对一个轴承振动信号的处理中,提取到其中隐藏的周期性冲击特征,实现对轴承损伤的准确诊断。相应地与小波变换结果进行比较,证明MRSVD在信号处理和故障诊断领域是一种很有应用前景的方法。