针对分布式多输入多输出系统中的多频偏估计问题进行了研究,提出一种多分量调制信号的高分辨率频率盲估计方法。该方法避免了直接对多分量调制信号进行稀疏表示,无需导频等先验信息,避免传统频率估计方法中的内插、去相位混叠等处理,可...针对分布式多输入多输出系统中的多频偏估计问题进行了研究,提出一种多分量调制信号的高分辨率频率盲估计方法。该方法避免了直接对多分量调制信号进行稀疏表示,无需导频等先验信息,避免传统频率估计方法中的内插、去相位混叠等处理,可一次性精确估计出所有信号频率。通过正定盲源分离方法从接收信号中分离出多个源信号,经过盲去调制处理,将其转换成多单频信号,根据多单频信号的稀疏表示,利用一个随机的压缩矩阵对信号进行压缩,再在压缩域中通过l1模优化重构该稀疏信号,获得频率估计。仿真结果表明,与现有算法相比,所提方法可在少数据量、低信噪比下获得高精度估计性能,可在5 d B时达到1e-6的平均均方误差。展开更多
文摘针对分布式多输入多输出系统中的多频偏估计问题进行了研究,提出一种多分量调制信号的高分辨率频率盲估计方法。该方法避免了直接对多分量调制信号进行稀疏表示,无需导频等先验信息,避免传统频率估计方法中的内插、去相位混叠等处理,可一次性精确估计出所有信号频率。通过正定盲源分离方法从接收信号中分离出多个源信号,经过盲去调制处理,将其转换成多单频信号,根据多单频信号的稀疏表示,利用一个随机的压缩矩阵对信号进行压缩,再在压缩域中通过l1模优化重构该稀疏信号,获得频率估计。仿真结果表明,与现有算法相比,所提方法可在少数据量、低信噪比下获得高精度估计性能,可在5 d B时达到1e-6的平均均方误差。