期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于多判别器辅助分类器生成对抗网络的故障诊断方法研究
1
作者 叶子汉 王中华 +2 位作者 姜潮 吕新 张哲 《工程设计学报》 CSCD 北大核心 2024年第2期137-150,159,共15页
在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分... 在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分类器生成对抗网络的数据增强算法。通过设置3个判别器、1个生成器并添加独立的分类器,构建了新的辅助分类器生成对抗网络模型。针对在该模型训练中存在的不稳定性问题,通过引入Wasserstein距离构造新的损失函数,并采用稳定性更具优势的单边软约束正则化项替换原有的L2梯度惩罚项来解决模型崩溃问题;在此基础上,采用高效通道注意力机制来进一步提高模型的特征提取能力。将所提出的模型应用于扩充机械设备故障数据集,辅助深度学习智能诊断模型的训练。多个故障数据集扩充实验表明,与现有模型相比,新模型所生成数据的质量更高,故障诊断的准确率也得到进一步提高,因此具有较高的应用价值。 展开更多
关键词 多判别器辅助分类生成对抗网络 高效通道注意力机制 Lipschitz(利普希茨)约束 数据增强 故障诊断
下载PDF
基于渐进式训练的多判别器域适应目标检测
2
作者 李惠森 侯进 +1 位作者 党辉 周宇航 《计算机工程》 CAS CSCD 北大核心 2023年第10期202-211,221,共11页
基于对抗训练的域适应目标检测的研究旨在不对新数据集进行额外标注的情况下,将检测模型应用于不同的数据集。但现有算法存在目标检测和域对齐任务难以平衡的问题,且一般的单判别器结构容易局限于数据的单个模式,导致域对齐的质量下降... 基于对抗训练的域适应目标检测的研究旨在不对新数据集进行额外标注的情况下,将检测模型应用于不同的数据集。但现有算法存在目标检测和域对齐任务难以平衡的问题,且一般的单判别器结构容易局限于数据的单个模式,导致域对齐的质量下降。提出一种基于渐进式训练的多判别器域适应目标检测算法,针对传统的单判别器结构对复杂结构数据进行域对齐时的局限性,在实例级的域适应头中引入多判别器结构,使其在学习域不变信息时考虑数据的多模结构,实现质量更高、更全面的域对齐。同时,为降低引入多判别器结构而增加的模型复杂度,设计基于Dropout技术的多判别器结构,对单个判别器参数进行重复利用,并创新性地引入渐进式训练策略,即随着训练的推进逐步增大域对齐任务的比重和难度,动态平衡目标检测和域对齐任务的权重。实验结果表明,所提算法在Cityscapes到Foggy Cityscapes的域适应场景下的平均检测精度为42.9%,相比近几年该领域的新算法提高了至少0.5个百分点。 展开更多
关键词 目标检测 域适应 对抗训练 多判别器 渐进式训练策略
下载PDF
多判别器循环生成对抗网络的素描人脸合成 被引量:1
3
作者 周华强 曹林 杜康宁 《计算机工程与应用》 CSCD 北大核心 2021年第3期231-238,共8页
素描人脸合成在娱乐和刑侦领域具有重要应用价值。为了解决传统素描人脸合成方法生成图像面部细节模糊,缺失真实感等问题,改进了CycleGAN网络结构,提出一种基于多判别器循环生成对抗网络的素描人脸合成方法。该方法选取残差网络作为生... 素描人脸合成在娱乐和刑侦领域具有重要应用价值。为了解决传统素描人脸合成方法生成图像面部细节模糊,缺失真实感等问题,改进了CycleGAN网络结构,提出一种基于多判别器循环生成对抗网络的素描人脸合成方法。该方法选取残差网络作为生成网络模型,在生成器隐藏层中增加多个判别器,提高网络对生成图像细节特征的提取能力;并建立了重构误差约束映射关系,最小化生成图像与目标图像之间的距离。通过在CUHK和AR人脸数据库中的对比实验,证明了相比于原始CycleGAN框架该方法性能有明显提升;相比于目前领先的方法,所提方法生成的素描图像细节特征更清晰,真实感更强。 展开更多
关键词 素描人脸合成 生成对抗网络 残差网络 多判别器网络 深度学习
下载PDF
基于测地Gabriel图的非线性流形判别分析
4
作者 陈华杰 韦巍 《电子学报》 EI CAS CSCD 北大核心 2006年第8期1405-1409,共5页
针对位于非线性流形上类别数据的判别分析问题,提出了一种基于测地Gabriel图的局部判别器融合算法.利用测地距离表征流形的内在几何结构,由此构造测地Gabriel图确定异类数据相互靠近的局部临界区域,进而训练得到局部线性的判别器.整体... 针对位于非线性流形上类别数据的判别分析问题,提出了一种基于测地Gabriel图的局部判别器融合算法.利用测地距离表征流形的内在几何结构,由此构造测地Gabriel图确定异类数据相互靠近的局部临界区域,进而训练得到局部线性的判别器.整体的非线性判别器由多个局部判别器融合得到:基于柔性边界准则函数,以迭代优化的方式,为每个局部判别器分配最佳的权重系数,整体上逐步提高异类样本间的区分度.在人工合成数据集以及人脸图像库上的实验证明了本文算法的有效性. 展开更多
关键词 非线性流形 测地距离 测地Gabriel图 多判别器融合
下载PDF
基于局部线性判别器融合的非线性流形判别分析
5
作者 陈华杰 韦巍 《模式识别与人工智能》 EI CSCD 北大核心 2007年第1期1-6,共6页
提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据 Gabriel 图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部... 提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据 Gabriel 图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部判别器分配最佳的权重系数.基于边界准则函数的融合算法,克服小样本问题,消除整体判别器的性能对样本分布的依赖性.在人工合成数据集以及人脸图像库上的实验证明本文算法的有效性. 展开更多
关键词 非线性流形 判别分析 Gabriel图 多判别器融合
原文传递
面向恶意网页训练数据生成的GAN模型 被引量:3
6
作者 万梦翔 姚寒冰 《计算机工程与应用》 CSCD 北大核心 2021年第6期124-130,共7页
针对基于机器学习算法识别恶意网页时恶意网页样本收集困难的问题,提出了一种基于生成对抗网络(GAN)的扩展恶意网页样本数据集的方法(WS-GAN),使用少量的原始样本数据训练生成对抗网络,利用生成器模拟生成网页样本。同时在原有生成对抗... 针对基于机器学习算法识别恶意网页时恶意网页样本收集困难的问题,提出了一种基于生成对抗网络(GAN)的扩展恶意网页样本数据集的方法(WS-GAN),使用少量的原始样本数据训练生成对抗网络,利用生成器模拟生成网页样本。同时在原有生成对抗网络的结构中加入了多个判别器:全局判别器判别整体样本的真伪,控制生成样本整体的质量;各特征判别器判别其对应类别特征数据的真伪,控制生成样本细节部分的质量。实验结果表明,WS-GAN生成的网页特征样本可用于恶意网页分类器的训练,并且其生成样本的质量优于条件生成对抗网络和条件变分自编码器生成样本的质量。 展开更多
关键词 恶意网页识别 恶意网页特征 学习 生成对抗网络 多判别器
下载PDF
基于生成式对抗网络的恶意URL数据生成与检测 被引量:1
7
作者 郑阳 努尔布力 《计算机科学与应用》 2020年第5期935-943,共9页
针对基于机器学习的恶意网页识别中对数据集的收集和标注敏感的问题,提出了一种基于生成式对抗网络(GAN)的检测方法,并且设计了编码器,将恶意URL进行字符级编码。通过使用少量样本训练模型,通过GAN拟合真实样本的能力,生成恶意网页样本... 针对基于机器学习的恶意网页识别中对数据集的收集和标注敏感的问题,提出了一种基于生成式对抗网络(GAN)的检测方法,并且设计了编码器,将恶意URL进行字符级编码。通过使用少量样本训练模型,通过GAN拟合真实样本的能力,生成恶意网页样本。本文在传统GAN的基础上增加了一个判别器用来判别良性和恶性网页,达到了判别恶意网页的作用。最后通过横纵对比实验,分别验证了生成数据的可行以及判别模型可以达到当前有监督分类器相当的效果。 展开更多
关键词 恶意网页识别 学习 生成对抗网络 多判别器 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部