提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据 Gabriel 图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部...提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据 Gabriel 图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部判别器分配最佳的权重系数.基于边界准则函数的融合算法,克服小样本问题,消除整体判别器的性能对样本分布的依赖性.在人工合成数据集以及人脸图像库上的实验证明本文算法的有效性.展开更多
文摘提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据 Gabriel 图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部判别器分配最佳的权重系数.基于边界准则函数的融合算法,克服小样本问题,消除整体判别器的性能对样本分布的依赖性.在人工合成数据集以及人脸图像库上的实验证明本文算法的有效性.