期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多判别器辅助分类器生成对抗网络的故障诊断方法研究
1
作者 叶子汉 王中华 +2 位作者 姜潮 吕新 张哲 《工程设计学报》 CSCD 北大核心 2024年第2期137-150,159,共15页
在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分... 在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分类器生成对抗网络的数据增强算法。通过设置3个判别器、1个生成器并添加独立的分类器,构建了新的辅助分类器生成对抗网络模型。针对在该模型训练中存在的不稳定性问题,通过引入Wasserstein距离构造新的损失函数,并采用稳定性更具优势的单边软约束正则化项替换原有的L2梯度惩罚项来解决模型崩溃问题;在此基础上,采用高效通道注意力机制来进一步提高模型的特征提取能力。将所提出的模型应用于扩充机械设备故障数据集,辅助深度学习智能诊断模型的训练。多个故障数据集扩充实验表明,与现有模型相比,新模型所生成数据的质量更高,故障诊断的准确率也得到进一步提高,因此具有较高的应用价值。 展开更多
关键词 多判别辅助分类生成对抗网络 高效通道注意力机制 Lipschitz(利普希茨)约束 数据增强 故障诊断
下载PDF
多判别器循环生成对抗网络的素描人脸合成 被引量:1
2
作者 周华强 曹林 杜康宁 《计算机工程与应用》 CSCD 北大核心 2021年第3期231-238,共8页
素描人脸合成在娱乐和刑侦领域具有重要应用价值。为了解决传统素描人脸合成方法生成图像面部细节模糊,缺失真实感等问题,改进了CycleGAN网络结构,提出一种基于多判别器循环生成对抗网络的素描人脸合成方法。该方法选取残差网络作为生... 素描人脸合成在娱乐和刑侦领域具有重要应用价值。为了解决传统素描人脸合成方法生成图像面部细节模糊,缺失真实感等问题,改进了CycleGAN网络结构,提出一种基于多判别器循环生成对抗网络的素描人脸合成方法。该方法选取残差网络作为生成网络模型,在生成器隐藏层中增加多个判别器,提高网络对生成图像细节特征的提取能力;并建立了重构误差约束映射关系,最小化生成图像与目标图像之间的距离。通过在CUHK和AR人脸数据库中的对比实验,证明了相比于原始CycleGAN框架该方法性能有明显提升;相比于目前领先的方法,所提方法生成的素描图像细节特征更清晰,真实感更强。 展开更多
关键词 素描人脸合成 生成对抗网络 残差网络 多判别器网络 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部