针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感...针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.展开更多
文摘针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.