An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of...An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.展开更多
An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and gr...An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.展开更多
To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the...To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr...Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.展开更多
The shape evolution of bubble formed in carboxymethylcellulose(CMC) aqueous solution was real-time observed using laser image technique. The flow fields of liquid around growing and rising bubble were measured by lase...The shape evolution of bubble formed in carboxymethylcellulose(CMC) aqueous solution was real-time observed using laser image technique. The flow fields of liquid around growing and rising bubble were measured by laser Doppler velocimetry(LDV), and the liquid mean velocity and its contour curves were obtained. The results show that bubble grows as spherical shape because of the dominant role of surface tension in the early period, and then is stretched gradually as a teardrop shape due to the common effect of buoyancy and shear-thinning of fluid. The axial mean velocity of liquid phase takes on Gaussian distribution with the symmetrical axis passing through orifice center. However, the radial mean velocity increases first and then decreases with the increase of the distance from measured point to the symmetrical axis above. Further, the axial component along symmetrical axis decreases initially and increases with the rise of height, as well as its corresponding contour map diverging gradually. The radial component, yet, decreases steadily with the rise of height, and the maximum value deviates towards the two sides until disappear, as it contour shape of butterfly's "front wing".展开更多
The measurement results by Laser Doppler Velocimetry (LDV) are compared with the direct numerical simulation result by Eggels et al.[1] for a cylindrical pipe flow. In the case of a pipe flow, the bias error for mean ...The measurement results by Laser Doppler Velocimetry (LDV) are compared with the direct numerical simulation result by Eggels et al.[1] for a cylindrical pipe flow. In the case of a pipe flow, the bias error for mean velocity is very small, because the local turbulent intensity is very small all over the pipe cross section. However the difference of the combination of u’ and v’ have considerable effects on Reynolds shear stress. From our investigation, it is found that the selection of coincidence time that is a necessary parameter for combination of u’ and v’ is more important in obtaining the accurate Reynolds shear stress. The suitable coincidence time is selectal for a jet flow and the effectiveness of coincident bine method or equal time interval method with coincidence data is shown.展开更多
The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs dat...The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs data. Using mass spectrometry-based de novo sequencing algorithm, peptide-candidates are identified and compared with theoretical protein database to generate SAVs under pairing strategy, which is followed by database re-searching to control false discovery rate. in human brain tissues, we can confidently identify known and novel protein variants with diverse origins. Combined with DNA/RNA sequencing, we verify SAVs derived from DNA mutations, RNA alternative splicing, and unknown post-transcriptional mechanisms. Furthermore, quantitative analysis in human brain tissues reveals several tissue-specific differential expressions of SAVs. This approach provides a novel access to high-throughput detection of protein variants, which may offer the potential for clinical biomarker discovery and mechanistic research.展开更多
Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase s...Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase systems since the existence of such dispersed particles influences the momentum,mass and heat transport behaviors in these systems.Up to now,a vast body of literature has been published in dealing with the transport phenomena related to a particle surrounded by a fluid under various physical circumstances.In this paper,principal research results for the transport process of a single spherical particle in pure extensional and simple shear flows presented in the literature,including our recent work,are generally reviewed in order to give a comprehensive knowledge in this area.展开更多
The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed...The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.展开更多
文摘An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.
文摘An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.
基金The National Natural Science Foundation of China(No.51375091)
文摘To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.
基金Supported by the Key R&D Projects in Shaanxi Province(2022JBGS3-08)。
文摘Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.
基金Financially supported by National Natural Science Foundation of China(21076139,21106106)Tianjin Natural Science Foundation(12JCQNJC03700)Foundation of Tianjin Educational Committee of China(20100508)
文摘The shape evolution of bubble formed in carboxymethylcellulose(CMC) aqueous solution was real-time observed using laser image technique. The flow fields of liquid around growing and rising bubble were measured by laser Doppler velocimetry(LDV), and the liquid mean velocity and its contour curves were obtained. The results show that bubble grows as spherical shape because of the dominant role of surface tension in the early period, and then is stretched gradually as a teardrop shape due to the common effect of buoyancy and shear-thinning of fluid. The axial mean velocity of liquid phase takes on Gaussian distribution with the symmetrical axis passing through orifice center. However, the radial mean velocity increases first and then decreases with the increase of the distance from measured point to the symmetrical axis above. Further, the axial component along symmetrical axis decreases initially and increases with the rise of height, as well as its corresponding contour map diverging gradually. The radial component, yet, decreases steadily with the rise of height, and the maximum value deviates towards the two sides until disappear, as it contour shape of butterfly's "front wing".
文摘The measurement results by Laser Doppler Velocimetry (LDV) are compared with the direct numerical simulation result by Eggels et al.[1] for a cylindrical pipe flow. In the case of a pipe flow, the bias error for mean velocity is very small, because the local turbulent intensity is very small all over the pipe cross section. However the difference of the combination of u’ and v’ have considerable effects on Reynolds shear stress. From our investigation, it is found that the selection of coincidence time that is a necessary parameter for combination of u’ and v’ is more important in obtaining the accurate Reynolds shear stress. The suitable coincidence time is selectal for a jet flow and the effectiveness of coincident bine method or equal time interval method with coincidence data is shown.
文摘The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs data. Using mass spectrometry-based de novo sequencing algorithm, peptide-candidates are identified and compared with theoretical protein database to generate SAVs under pairing strategy, which is followed by database re-searching to control false discovery rate. in human brain tissues, we can confidently identify known and novel protein variants with diverse origins. Combined with DNA/RNA sequencing, we verify SAVs derived from DNA mutations, RNA alternative splicing, and unknown post-transcriptional mechanisms. Furthermore, quantitative analysis in human brain tissues reveals several tissue-specific differential expressions of SAVs. This approach provides a novel access to high-throughput detection of protein variants, which may offer the potential for clinical biomarker discovery and mechanistic research.
基金supported by the National Science Fund for Distinguished Young Scholars(21025627)the National Natural Science Foundation of China(20990224,21106150)+1 种基金the National Basic Research Program of China(2010CB630904)863 project(2012AA03A606)
文摘Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase systems since the existence of such dispersed particles influences the momentum,mass and heat transport behaviors in these systems.Up to now,a vast body of literature has been published in dealing with the transport phenomena related to a particle surrounded by a fluid under various physical circumstances.In this paper,principal research results for the transport process of a single spherical particle in pure extensional and simple shear flows presented in the literature,including our recent work,are generally reviewed in order to give a comprehensive knowledge in this area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872010, 10732020 and 11072008)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitythe Ph.D. Programs Foundation of Beijing University of Technology (Grant No. 52001015200701)
文摘The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.