The theory of multibody system dynamics is used to simulate valve trains' kinematics and dynamics characteristics, and the methods of establishing and analyzing the multibody system dynamics model for valve trains...The theory of multibody system dynamics is used to simulate valve trains' kinematics and dynamics characteristics, and the methods of establishing and analyzing the multibody system dynamics model for valve trains are discussed. Since most of the flexible bodies of a valve train are slender parts, the finite segment method is used to build their models. Other parts such as cams, valve heads etc., are built as rigid bodies. After applying the constraints, forces and motions, the establishing of the whole system is accomplished, and the Lagrange's multiplier method can be used to obtain its dynamics constitutive equations. As an example, a valve trains multibody system model of 4100QB engine made by the Yunnan Internal Combustion Engine Limited Liability Company is established, and the analysis results obtained show that its working performance is generally good except that the air pass ability and the lubrication effect of the cam and the tappet have to be improved.展开更多
Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic th...Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.展开更多
Common effect of wave and slip of internal heavy load will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibodies System with a floating base is com...Common effect of wave and slip of internal heavy load will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibodies System with a floating base is composed of ro-ro ship and slipping heavy load. This paper takes the rolling angle of the ship and the transverse displacement of the heavy load on desk as two freedoms. Making use of analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By use of dynamic method of multibodies system with a floating base, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the ship and displacement response of the slipping heavy load under common effect of synchro-slipping heavy loads and wave.展开更多
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o...In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength...The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.展开更多
In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting di...In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.展开更多
This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody sys...This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody system and is studied as such. Dynamic analyses of constrained multibody systems may be obtained using recently developed procedures based upon Kane′s equations and Huston′s methods. These procedures lead to a numerical formulation of the governing equations, thus producing a simulation of the movement of the system. The procedures are applied and illustrated with a two robot system using PUMA 760 and 562 robots. A good agreement is obtained between theoretical and experimental results.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taugh...Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taught advanced dynamics for more than ten years, this is the author's observation. Why it is so? Because the course of advanced dynamics covers usually many mathematical fundamentals such as vectors, tensors, matrices and rotation operators; principles and applications in dynamics from particle dynamics to rigid body motion, from small oscillation to vibration of systems with multiple degrees of freedom, the author's course covers also special relativity theory. They are very innovative. And they set the foundation for the study of all the graduate courses. Science is always in progress, dynamics is in the same form. Just say a few examples to illustrate the frontier of dynamics: missile shooting missile is important in our defense, the author covered this as an example in particle dynamics. Space ship travels from Earth to Mars is another example. Several rotational motions with different axes can be combined to one through the use of rotation operator. This is important because it usually can save time. All these examples will be included in this paper in some details.展开更多
Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discre...Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.展开更多
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make th...To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.展开更多
Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and can...Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.展开更多
Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, m...Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.展开更多
Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge chal...Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025-2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.展开更多
The consensus problem for general linear multi-agent systems (MASs) under directed topology is investigated. First, a novel consensus protocol based on proportional-integral-derivative (PID) control is proposed. S...The consensus problem for general linear multi-agent systems (MASs) under directed topology is investigated. First, a novel consensus protocol based on proportional-integral-derivative (PID) control is proposed. Second, the consensus problem is converted into an asymptotic stability problem through transformations. Third, through a state projection method the consensus condition is proved and the explicit expression of the consensus function is given. Then, a Lyapunov function is constructed and the gain matrices of the protocol are given based on the linear matrix inequality. Finally, two experiments are conducted to explain the advantages of the method. Simulation results show the effectiveness of the proposed algorithm.展开更多
We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effect...We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.展开更多
There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors wi...There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors with minimum sacrifice in power density and cycle life. Here, an advanced graphene-based hybrid system, consisting of a graphene-inserted Li4Ti5O12 (LTO) composite anode (G-LTO) and a three-dimensional porous graphene-sucrose cathode, has been fabricated for the purpose of combining both the benefits of Li-ion batteries (energy source) and supercapacitors (power source). Graphene-based materials play a vital role in both electrodes in respect of the high performance of the hybrid supercapacitor. For example, compared with the theoretical capacity of 175 mA-h.g-1 for pure LTO, the G-LTO nanocomposite delivered excellent reversible capacities of 207, 190, and 176 mA·1h·g-1 at rates of 0.3, 0.5, and 1 C, respectively, in the potential range 1.0-2.5 V vs. Li/Li+; these are among the highest values for LTO-based nano- composites at the same rates and potential range. Based on this, an optimized hybrid supercapacitor was fabricated following the standard industry procedure; this displayed an ultrahigh energy density of 95 Wh·kg-1 at a rate of 0.4 C (2.5 h) over a wide voltage range (0-3 V), and still retained an energy density of 32 Wh·kg-1 at a high rate of up to 100 C, equivalent to a full discharge in 36 s, which is exceptionally fast for hybrid supercapacitors. The excellent performance of this Li-ion hybrid supercapacitor indicates that graphene-based materials may indeed play a significant role in next-generation supercapacitors with excellent electrochemical performance.展开更多
Based on 1,3-propanediol production from batch fermentation of glycerol by Klebsiella pneurnoniae, a multistage dynamic system and its parameter identification are discussed in this paper. The batch fermentation proce...Based on 1,3-propanediol production from batch fermentation of glycerol by Klebsiella pneurnoniae, a multistage dynamic system and its parameter identification are discussed in this paper. The batch fermentation process is divided into three stages exhibiting different dynamic behaviors and characteristics, from which a corresponding nonlinear multistage dynamic system is built. We then propose a parameter identification optimization model whose objective function is the average relative error. The model is solved by particle swarm optimization weighted by inertia, and the result shows that the relative error of our proposed model is 2-10%smaller than those of existing models.展开更多
文摘The theory of multibody system dynamics is used to simulate valve trains' kinematics and dynamics characteristics, and the methods of establishing and analyzing the multibody system dynamics model for valve trains are discussed. Since most of the flexible bodies of a valve train are slender parts, the finite segment method is used to build their models. Other parts such as cams, valve heads etc., are built as rigid bodies. After applying the constraints, forces and motions, the establishing of the whole system is accomplished, and the Lagrange's multiplier method can be used to obtain its dynamics constitutive equations. As an example, a valve trains multibody system model of 4100QB engine made by the Yunnan Internal Combustion Engine Limited Liability Company is established, and the analysis results obtained show that its working performance is generally good except that the air pass ability and the lubrication effect of the cam and the tappet have to be improved.
文摘Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.
基金the National Natural Science Foundation of China(50309018).
文摘Common effect of wave and slip of internal heavy load will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibodies System with a floating base is composed of ro-ro ship and slipping heavy load. This paper takes the rolling angle of the ship and the transverse displacement of the heavy load on desk as two freedoms. Making use of analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By use of dynamic method of multibodies system with a floating base, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the ship and displacement response of the slipping heavy load under common effect of synchro-slipping heavy loads and wave.
文摘In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),高等学校全国优秀博士学位论文作者专项基金,the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education,Institutions of MOE,HYD Foundation,教育部高校骨干教师资助计划
文摘The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.
文摘In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.
文摘This paper studies the dynamics of multiarm robots and multirobot configuration. With two or more arms holding an object, one or more closed loops are formed by the arms. The system is then a constrained multibody system and is studied as such. Dynamic analyses of constrained multibody systems may be obtained using recently developed procedures based upon Kane′s equations and Huston′s methods. These procedures lead to a numerical formulation of the governing equations, thus producing a simulation of the movement of the system. The procedures are applied and illustrated with a two robot system using PUMA 760 and 562 robots. A good agreement is obtained between theoretical and experimental results.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
文摘Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taught advanced dynamics for more than ten years, this is the author's observation. Why it is so? Because the course of advanced dynamics covers usually many mathematical fundamentals such as vectors, tensors, matrices and rotation operators; principles and applications in dynamics from particle dynamics to rigid body motion, from small oscillation to vibration of systems with multiple degrees of freedom, the author's course covers also special relativity theory. They are very innovative. And they set the foundation for the study of all the graduate courses. Science is always in progress, dynamics is in the same form. Just say a few examples to illustrate the frontier of dynamics: missile shooting missile is important in our defense, the author covered this as an example in particle dynamics. Space ship travels from Earth to Mars is another example. Several rotational motions with different axes can be combined to one through the use of rotation operator. This is important because it usually can save time. All these examples will be included in this paper in some details.
基金supported by the National Natural Science Foundation of China (Grant No: 10902051)the Natural Science Foundation of Jiangsu Province (Grant No: BK2008046)
文摘Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61104092,61134007,and61203147the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.
基金the National Natural Science Foundations of China(Grant Nos.12102035 and 12125201)the China Postdoctoral Science Foundation(Grant No.2020TQ0042)the Beijing Natural Science Foundation(Grant No.L212008).
文摘Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.
基金supported partly by“973 Program”under Grant No.2014CB340701by the National Natural Science Foundation of China under Grant Nos.61625205,91418204 and 61625206+2 种基金by CDZ Project CAP(GZ 1023)by the CAS/SAFEA International Partnership Program for Creative Research Teamssupported partly by the National Natural Science Foundation of China under Grant Nos.11290141,11271034 and 61532019
文摘Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.
基金supported by the National Natural Science Foundation of China(Grant Nos.41590845&41601096)the China Postdoctoral Science Foundation(Grant No.2015M581160)
文摘Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025-2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.
基金Project supported by the National Natural Science Foundation of China (No. 50875132)
文摘The consensus problem for general linear multi-agent systems (MASs) under directed topology is investigated. First, a novel consensus protocol based on proportional-integral-derivative (PID) control is proposed. Second, the consensus problem is converted into an asymptotic stability problem through transformations. Third, through a state projection method the consensus condition is proved and the explicit expression of the consensus function is given. Then, a Lyapunov function is constructed and the gain matrices of the protocol are given based on the linear matrix inequality. Finally, two experiments are conducted to explain the advantages of the method. Simulation results show the effectiveness of the proposed algorithm.
基金Supported by National Natural Science Foundation of China under Grant No.10774192
文摘We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.
基金The authors gratefully acknowledge financial support from Ministry of Science and Technology of the People's Republic of China (MOST) (Grants Nos. 2012CB933401 and 2011DFB50300), and National Natural Science Foundation of China (NSFC) (Grants Nos. 50933003 and 51273093).
文摘There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors with minimum sacrifice in power density and cycle life. Here, an advanced graphene-based hybrid system, consisting of a graphene-inserted Li4Ti5O12 (LTO) composite anode (G-LTO) and a three-dimensional porous graphene-sucrose cathode, has been fabricated for the purpose of combining both the benefits of Li-ion batteries (energy source) and supercapacitors (power source). Graphene-based materials play a vital role in both electrodes in respect of the high performance of the hybrid supercapacitor. For example, compared with the theoretical capacity of 175 mA-h.g-1 for pure LTO, the G-LTO nanocomposite delivered excellent reversible capacities of 207, 190, and 176 mA·1h·g-1 at rates of 0.3, 0.5, and 1 C, respectively, in the potential range 1.0-2.5 V vs. Li/Li+; these are among the highest values for LTO-based nano- composites at the same rates and potential range. Based on this, an optimized hybrid supercapacitor was fabricated following the standard industry procedure; this displayed an ultrahigh energy density of 95 Wh·kg-1 at a rate of 0.4 C (2.5 h) over a wide voltage range (0-3 V), and still retained an energy density of 32 Wh·kg-1 at a high rate of up to 100 C, equivalent to a full discharge in 36 s, which is exceptionally fast for hybrid supercapacitors. The excellent performance of this Li-ion hybrid supercapacitor indicates that graphene-based materials may indeed play a significant role in next-generation supercapacitors with excellent electrochemical performance.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (Grant No. 10871033), "863" Program (No. 2007AA02Z208) and "973" Program (No. 2007CB71430c).
文摘Based on 1,3-propanediol production from batch fermentation of glycerol by Klebsiella pneurnoniae, a multistage dynamic system and its parameter identification are discussed in this paper. The batch fermentation process is divided into three stages exhibiting different dynamic behaviors and characteristics, from which a corresponding nonlinear multistage dynamic system is built. We then propose a parameter identification optimization model whose objective function is the average relative error. The model is solved by particle swarm optimization weighted by inertia, and the result shows that the relative error of our proposed model is 2-10%smaller than those of existing models.