期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
融合监督注意力模块和跨阶段特征融合的图像修复改进网络
1
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
下载PDF
基于有效感受野和注意力融合机制的脑肿瘤全自动分割
2
作者 邹祥 王瑜 +1 位作者 肖洪兵 杨迪 《中国医学物理学杂志》 CSCD 2024年第5期563-570,共8页
深度学习在医学图像分割领域取得了显著成果,但其在脑肿瘤分割任务中,仍面临感受野不足、冗余信息过多、信息丢失等问题;为此,本研究提出一种基于编-解码结构的脑肿瘤分割网络模型(EAU-Net)。EAU-Net采用有效感受野拓展模块和注意力融... 深度学习在医学图像分割领域取得了显著成果,但其在脑肿瘤分割任务中,仍面临感受野不足、冗余信息过多、信息丢失等问题;为此,本研究提出一种基于编-解码结构的脑肿瘤分割网络模型(EAU-Net)。EAU-Net采用有效感受野拓展模块和注意力融合模块改善脑肿瘤分割网络感受野不足与冗余信息过多带来的不利影响;同时,引入基于倒残差结构的瓶颈重采样模块,有效避免上下采样时造成的信息损失,并采用深度卷积降低网络的计算量。在BraTS2020数据集上的实验结果表明,EAU-Net获得最优的分割精度,验证了其在脑肿瘤分割任务中的可行性和有效性。 展开更多
关键词 脑肿瘤分割 EAU-Net 有效感受野拓展模块 注意力融合模块 倒残差结构
下载PDF
基于注意力密集网络的伪彩色红外与可见光图像融合
3
作者 漆建环 倪波 +3 位作者 周晓彦 倪海彬 杨凌升 常建华 《国外电子测量技术》 2024年第5期84-91,共8页
针对现有红外与可见光图像融合算法中存在融合图像的纹理细节不清晰,红外信息和纹理细节的显示不平衡等问题,提出了一种基于注意力密集网络的伪彩色红外与可见光图像融合方法。首先对灰度的红外图像进行伪彩色处理再与彩色的可见光图像... 针对现有红外与可见光图像融合算法中存在融合图像的纹理细节不清晰,红外信息和纹理细节的显示不平衡等问题,提出了一种基于注意力密集网络的伪彩色红外与可见光图像融合方法。首先对灰度的红外图像进行伪彩色处理再与彩色的可见光图像组成多通道数据输入融合网络。其次,设计了一种由卷积层和带有注意力模块的密集连接块组成的生成器网络结构,关注源图像的关键信息,增强网络提取源图像信息的能力。最后,利用红外像素、可见光像素、可见光梯度和红外梯度构建内容损失函数,以保持融合图像中红外目标和纹理细节的平衡。与5种具有代表性的融合方法进行定性和定量比较。结果表明,该方法所获得融合图像的峰值信噪比、信息熵、平均梯度和互信息取得最优值,分别为31.6841、6.5581、6.0096、3.0960。定量以及定性结果证明所提融合方法使融合图像具有更为丰富的纹理细节以及良好的视觉效果。 展开更多
关键词 红外与可见光图像 图像融合 注意力模块 密集连接块
下载PDF
区域增强型注意力网络下的人脸表情识别
4
作者 陈公冠 张帆 +2 位作者 王桦 范辉 张彩明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期152-160,共9页
为了识别人脸表情中包含复杂背景、面部遮挡等因素的真实环境下的图像,提出基于区域增强型注意力网络的人脸表情识别方法.首先提出基于注意力的区域增强网络,减弱外部因素的影响以及增强表情识别在真实环境下的鲁棒性;然后提出通道-空... 为了识别人脸表情中包含复杂背景、面部遮挡等因素的真实环境下的图像,提出基于区域增强型注意力网络的人脸表情识别方法.首先提出基于注意力的区域增强网络,减弱外部因素的影响以及增强表情识别在真实环境下的鲁棒性;然后提出通道-空间注意力融合网络,作用于全局的特征提取;最后通过分区损失和交叉熵损失相结合的方式提升表情图像的辨识度,从而提升识别准确率.在公开数据集RAF-DB,FERPlus和AffectNet上的实验结果表明,表情识别准确率分别达到88.81%,89.32%和60.45%;所提方法具有更高的准确率和鲁棒性. 展开更多
关键词 人脸表情识别 区域增强 注意力融合 分区损失
下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络
5
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
下载PDF
双注意力机制与双向特征加权融合的车辆目标检测
6
作者 雷雪梅 李琛 《计算机应用文摘》 2024年第11期76-83,共8页
公路监控视频中的车辆检测场景复杂多样,存在干扰严重、目标尺寸小、尺寸变化大等情况。已有基于深度神经网络的目标检测模型效率不高,且存在不同程度的错检及漏检问题。文章提出了一种基于通道-空间双注意力机制与双向特征加权融合的... 公路监控视频中的车辆检测场景复杂多样,存在干扰严重、目标尺寸小、尺寸变化大等情况。已有基于深度神经网络的目标检测模型效率不高,且存在不同程度的错检及漏检问题。文章提出了一种基于通道-空间双注意力机制与双向特征加权融合的车辆目标检测模型,它与YOLOv5网络相结合,不仅提高了目标检测精度,还在满足实时性的前提下有效减少了模型计算量和参数。实验结果表明,模型的平均检测精度mAP由YOLOv5m的85.1%提升至91.5%,而计算量和参数量分别为YOLOv5m的44.3%与53.6%,同时检测速度略有提升,实现了简单、快速的车辆目标检测。 展开更多
关键词 车辆目标检测 YOLOv5 卷积注意力模块 双向特征融合 小目标检测
下载PDF
基于多注意力机制与跨特征融合的语义分割算法
7
作者 闵莉 董冰洁 安冬 《计算机工程》 CAS CSCD 北大核心 2024年第8期282-289,共8页
图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的... 图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的图像语义分割算法。该算法选取轻量级网络MobileNetv2作为主干,以缩短训练时间;通过优化空洞空间金字塔池化模块中空洞卷积的膨胀率,改善多尺度语义特征的提取效果,提高模型对小目标的分割能力,并将兼具通道与空间的卷积块注意力机制引入其中,更加关注对分割起决定作用的区域,从而加强对目标边界的提取;在编码器中设计跨特征融合模块,以聚合不同层次特征图的空间信息和语义信息,提高网络学习特征的能力;在编码和解码部分均引入坐标注意力机制,以分解全局平均池化的方式将位置信息嵌入到通道中,从而得到分割目标的准确位置。实验结果表明,所提算法F3crc-DeepLabv3+在PASCAL VOC 2012增强数据集和Cityspaces数据集上的平均交并比分别达到了75.06%和73.06%,平均精度分别达到了84.16%和82.05%,精确率分别达到了86.18%和85.43%,训练时间分别为10 h和13.8 h,具有较优的网络性能。 展开更多
关键词 语义分割 DeepLabv3+网络 MobileNetv2网络 坐标注意力 卷积块注意力模块 跨特征融合
下载PDF
可变形分支注意力融合网络的胰腺分割方法
8
作者 付艳贞 樊建聪 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2717-2724,共8页
胰腺具有尺寸小、形状不规则且多变的特点,因此在腹部CT图像中自动分割胰腺具有极大的挑战性.为了适应胰腺特征并解决其分割困难的问题,本文提出了一种轻量级的可变形分支注意力融合网络(Deformable Branch Attention Fusion Network,DB... 胰腺具有尺寸小、形状不规则且多变的特点,因此在腹部CT图像中自动分割胰腺具有极大的挑战性.为了适应胰腺特征并解决其分割困难的问题,本文提出了一种轻量级的可变形分支注意力融合网络(Deformable Branch Attention Fusion Network,DBA-Net)作为胰腺自动分割方法.该方法首先将候选区域裁剪出来作为网络的输入,以便减少背景干扰并突出胰腺区域;然后引入可变形卷积使网络自适应地学习胰腺的空间结构;最后提出分支注意力融合模块实现低级别特征和高级别特征的融合,帮助解码器更好地还原特征图.本文的方法在NIH数据集上测试的Dice相似系数为85.3%,在MSD数据集上的Dice相似系数为78.9%,相比基线U-Net分别提高了3.9%和5.6%.实验结果表明本文的方法能够对胰腺进行更好的分割. 展开更多
关键词 胰腺分割 轻量级 可变形卷积 分支注意力融合模块
下载PDF
融合姿态信息和注意力机制的行人重识别研究
9
作者 梁丹阳 魏丹 +1 位作者 庄须瑶 江磊 《上海工程技术大学学报》 CAS 2024年第2期179-186,共8页
针对行人重识别(person re-identification,Re-ID)任务中行人遮挡以及背景信息杂乱不便于提取具有辨识度特征的问题,引入人体关键点模型定位出行人的关键点坐标以便于消除背景信息,根据关键点坐标将图片分割成具有语义信息的区域块。对... 针对行人重识别(person re-identification,Re-ID)任务中行人遮挡以及背景信息杂乱不便于提取具有辨识度特征的问题,引入人体关键点模型定位出行人的关键点坐标以便于消除背景信息,根据关键点坐标将图片分割成具有语义信息的区域块。对于骨干网络,为使其提取的特征更加鲁棒,设计一个强化注意力模块(enhanced attention module,EAM),使网络自动分配权重,最终得到更加具有辨识度的特征向量。最后将这些区域块和整体图片送入修改后的注意力机制的神经网络并且联合多个损失一起优化网络。在几个行人重识别数据集试验验证了本研究提出方法优于大多数方法。试验结果还表明该网络针对跨域以及遮挡问题也起到积极作用。 展开更多
关键词 行人重识别 姿态信息 注意力模块 分块特征 特征融合 跨域识别
下载PDF
基于交叉自注意力的多模态图像融合方法
10
作者 杜群 江亚峰 +1 位作者 王占光 袁明新 《装备制造技术》 2024年第9期21-25,共5页
为了提高多模态图像的融合效果,提出一种基于交叉自注意力的多模态图像融合网络,主要利用卷积运算和视觉Transformer的优势进行多模态的图像数据融合。网络采用了双分支结构,首先,将可见光图像与红外图像分别经过相同的卷积模块获取模... 为了提高多模态图像的融合效果,提出一种基于交叉自注意力的多模态图像融合网络,主要利用卷积运算和视觉Transformer的优势进行多模态的图像数据融合。网络采用了双分支结构,首先,将可见光图像与红外图像分别经过相同的卷积模块获取模态特征,为了更有效地学习不同模态图像间的局部关联信息和全局关联信息。其次,将输入图像特征转化为序列模块特征后输入Transformer模块,采用交叉自注意力机制模拟Transformer模块中不同模态图像的对应关系,增加数据解析的维度,提高融合网络对全局信息的保留;然后设计了一个自残差空洞卷积连接网络,用于获得卷积过程中忽略的局部重要信息,增强网络对重点信息的提取能力;最后将融合得到的特征信息通过后续的卷积神经网络获得融合后的图像。为验证方法的有效性,在多模态数据集MS-COCO中的两个公开的红外和可见光图像数据集、磁共振成像和正电子放射断层造影术数据集上进行了大量的实验,并进行定性和定量分析,结果表明,所提出的模型相较于主流融合方法能够取得更好地融合效果。 展开更多
关键词 多模态 图像融合 Transformer模块 卷积神经网络 交叉自注意力
下载PDF
红外弱光下多特征融合与注意力增强铁路异物检测
11
作者 陈永 王镇 +1 位作者 卢晨涛 张娇娇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1884-1895,共12页
针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上... 针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上,引入自适应特征融合(ASFF)模块,充分利用目标高层语义与底层细粒度特征信息,提升红外目标特征提取能力。通过提出的空洞卷积增强注意力模块(Dilated-CBAM)进行关键特征提取,扩大注意力模块感受野范围,克服了原始CenterNet卷积块感受野映射区域变窄、无法检测弱小目标的问题,提升了无锚框网络的检测精度。使用Smooth L1损失函数进行训练,克服了L1损失函数在网络训练过程收敛速度慢及训练不稳定解的问题。通过铁路红外数据集及现场实验测试,结果表明:所提方法较原始CenterNet模型平均检测精度提高了8.03%,检测框置信度提升了31.23%,平均检测速率是Faster R-CNN模型的9.6倍,所提方法在红外弱光环境下能够更加快速准确地检测出铁路异物,主客观评价均优于对比方法。 展开更多
关键词 机器视觉 红外弱光 异物检测 自适应特征融合 空洞卷积增强注意力模块 无锚框网络
下载PDF
基于双分支注意力网络的青光眼诊断方法
12
作者 张旭刚 赵鲁江 +1 位作者 江志刚 张华 《武汉科技大学学报》 CAS 北大核心 2024年第5期384-393,共10页
通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前... 通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前使用边界到像素方向(BPD)方法增强眼底图像的轮廓信息;其次,在网络编码器部分结合ConvNeXt的全局交互优势以及U-Net的局部处理优势,充分提取全局和局部的病理语义信息;最后,在解码器特征重建阶段采用多重注意力融合模块,通过直接和间接映射重组两个编码器和上采样模块提取的平滑和突出特征,深度挖掘目标区域信息,以提高模型对视杯/视盘区域分割的准确性。在REFUGE、DRISHTI-GS和RIM-ONEr3三个具有互补性的临床数据集上进行对比实验,验证了所设计的改进模块在提高眼底图像分割效果上的有效性,而且本文方法可有效平衡OC和OD两个目标区域的分割精度,在定量指标和可视化效果上均优于对比方法。 展开更多
关键词 青光眼 眼底图像 视杯/视盘分割 双分支注意力网络 多重注意力融合模块
下载PDF
基于多尺度融合注意力改进UNet的遥感图像水体分割 被引量:6
13
作者 石甜甜 郭中华 +1 位作者 闫翔 魏士钦 《液晶与显示》 CAS CSCD 北大核心 2023年第3期397-408,共12页
针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题... 针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题,设计了一种多尺度融合注意力模块(MSFAM),该模块使用点卷积融合通道全局信息、深度可分离卷积弥补全局池化造成的信息丢失。MSFAM用于UNet跳跃连接后的特征融合部分重新分配特征点权重以提高特征融合效率,增强网络获取不同尺度信息的能力。其次,空洞卷积用于VGG16主干网络扩展感受野,在不损失分辨率的情况下聚合全局信息。结果表明,A-MSFAM-UNet优于其他通道注意力(SENet、ECANet)改进的UNet,在GF-2水体分割数据集上平均交并比(MIoU)、平均像素精度(MPA)和准确率(Acc)分别达到了96.02%、97.98%和99.26%。 展开更多
关键词 遥感图像 注意力模块 深度可分离卷积 特征融合 空洞卷积
下载PDF
基于注意力和挤压-激励Inception的双分支合成语音检测
14
作者 王晗 赵腊生 +2 位作者 张强 程银清 邱泽鹏 《计算机应用》 CSCD 北大核心 2024年第10期3217-3222,共6页
合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测... 合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测模型。首先,基于SincNet(Sinc-based convolutional neural Network)提取的初始特征图训练注意力分支合成语音检测模型,并输出注意力图;其次,将注意力图和初始特征图相乘后再叠加,并将结果作为SE-Inc分支的输入进行训练;最后,通过决策级加权融合处理2个分支获得的分类分数,从而实现合成语音检测。实验结果表明,所提模型在参数量为539×10^(3)的情况下,在ASVspoof2019数据集上获得了0.0332的最小串联检测代价函数(mint-DCF)和1.15%的等错误率(EER);与SE-ResABNet(Squeeze-Excitation ResNet Attention Branch Network)相比,所提模型在参数量仅为它的56%的情况下,min t-DCF和EER分别下降了34.5%和39.2%;同时,在ASVspoof2015和ASVspoof2021数据集上所提模型表现了更好的泛化能力。以上结果验证了所提模型能够在参数量较小的情况下,获得更低的min t-DCF和EER。 展开更多
关键词 注意力机制 挤压-激励模块 双分支 合成语音检测 决策级融合
下载PDF
从全局到局部:双注意力融合去雾网络 被引量:2
15
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局与局部注意力融合 通道像素注意力 Transformer模块
下载PDF
多尺度和边界融合的皮肤病变区域分割网络
16
作者 王国凯 张翔 王顺芳 《计算机科学与探索》 CSCD 北大核心 2024年第7期1826-1837,共12页
皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分... 皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分割的多尺度和边界融合网络(MSBF-Net)。首先,提出了分裂池化(SplitPool)模块,在缩小图像分辨率的同时有效地解决了空间信息丢失的问题。其次,提出了全尺度特征融合(FSFF)模块,有效地解决了以往方法仅将深层特征向浅层特征融合,而忽略了更浅层特征中的细节信息对网络分割决策的贡献问题。同时,重新设计了U-Net原有的跳跃连接,为解码器提供了更丰富的上下文信息。最后,提出了用于增强网络对边界特征学习能力的子路径,并引入边界融合(BF)模块将主路径和子路径的预测结果进行融合,有效地解决了病变区域形状不规则和边界模糊问题。在ISIC2018数据集上,Dice和JI分别达到了90.12%和83.61%,比基线网络分别提高了1.13个百分点和1.62个百分点;在PH2数据集上,Dice和JI分别达到了94.72%和90.18%,比基线网络分别提高了1.49个百分点和2.17个百分点。实验结果表明,MSBFNet显著提升了皮肤病变区域分割的精确度,并在多个指标上超过了现有的先进方法,进一步验证了方法的有效性。 展开更多
关键词 皮肤病变区域分割 跳跃连接 边界特征 特征融合 注意力机制
下载PDF
基于协同注意力与特征融合的无人机小目标检测 被引量:1
17
作者 韩晶 王伟宇 +3 位作者 吕学强 陈玉忠 赵海兴 才藏太 《北京信息科技大学学报(自然科学版)》 2023年第3期1-8,共8页
针对现有无人机检测领域存在小目标检测困难以及特征提取效果不佳的问题,提出了一种基于协同注意力模块与双向特征融合结构的无人机小目标检测网络。通过设计协同注意力单元,与骨干网络形成协同注意力模块,显著提升模型特征表达能力;同... 针对现有无人机检测领域存在小目标检测困难以及特征提取效果不佳的问题,提出了一种基于协同注意力模块与双向特征融合结构的无人机小目标检测网络。通过设计协同注意力单元,与骨干网络形成协同注意力模块,显著提升模型特征表达能力;同时借鉴路径聚合网络的思想,设计双向特征融合结构,引入自底向上的特征融合路径,实现浅层特征与深层特征的深度融合,提高小目标检测精度。实验结果表明,所提算法在无人机小目标数据集上的平均精度优于其他网络,显著提升了无人机场景下小目标的检测性能。 展开更多
关键词 无人机图像 小目标检测 协同注意力模块 双向特征融合
下载PDF
基于新型时空双注意力模型的聚乙烯树脂密度软测量建模方法
18
作者 李俊杰 马军鹏 +4 位作者 马春雷 贺海波 安东玲 李子辉 陈志伟 《化工自动化及仪表》 CAS 2024年第5期900-906,共7页
由于在工业过程中产生的时序数据本身具有高度非线性和动态性,导致对聚乙烯关键指标的准确预测和生产优化指导变得困难。因此,提出一种基于新型时空双注意力模型的聚乙烯树脂密度软测量建模方法,旨在解决聚乙烯工业过程中的关键指标预... 由于在工业过程中产生的时序数据本身具有高度非线性和动态性,导致对聚乙烯关键指标的准确预测和生产优化指导变得困难。因此,提出一种基于新型时空双注意力模型的聚乙烯树脂密度软测量建模方法,旨在解决聚乙烯工业过程中的关键指标预测和能源结构优化问题。方法中引入了图注意力网络(GAT)和长短期时间序列网络(LSTNet),分别用于捕获复杂的时空关系以及提取时间相关特征,并将它们融合到一个统一的框架中,即时空融合模块(GLST),以实现自适应控制和准确预测。在GLST模型中,多头GAT模型被用于建模变量间显式的非线性关系,充分利用其信息聚合能力来提取时序数据的空间特征。同时,LSTNet模型有助于捕捉潜在的时间相关特征,从而更好地理解时序数据的动态性。GLST的引入使得能够将采集到的时空交互特征有效融合,从而实现对聚乙烯树脂密度的准确预测。为了验证方法的有效性,将该方法应用于实际工业生产聚乙烯树脂密度软测量建模中,结果表明:该方法不仅在与其他方法的比较中表现出显著的优越性,而且能够为实际聚乙烯生产工艺提供最佳的能源结构优化方案。 展开更多
关键词 时空融合模块 能源结构优化 聚乙烯 注意力机制 长短期时间序列网络 指标预测
下载PDF
基于通道注意力和边缘融合的伪装目标分割方法 被引量:1
19
作者 詹春兰 王安志 王明辉 《计算机应用》 CSCD 北大核心 2023年第7期2166-2172,共7页
伪装目标分割(COS)的目标是从背景中分离出隐藏的目标对象。近年来,基于卷积神经网络(CNN)的伪装目标检测(COD)发展迅速,然而仍存在无法从前/背景高度相似的场景中准确地检测出完整目标对象的问题。针对上述问题,提出一种基于通道注意力... 伪装目标分割(COS)的目标是从背景中分离出隐藏的目标对象。近年来,基于卷积神经网络(CNN)的伪装目标检测(COD)发展迅速,然而仍存在无法从前/背景高度相似的场景中准确地检测出完整目标对象的问题。针对上述问题,提出一种基于通道注意力(CA)和边缘融合的COS方法CANet(Network based on Channel Attention and edge fusion),以得到伪装目标的边缘细节更清晰的完整分割结果。首先,引入压缩和激励(SE)注意力模块,以提取更丰富的高级语义特征;其次,提出一个边缘融合模块,抑制低级特征中的干扰,并充分利用图像的边缘细节信息;最后,设计了基于深度可分离卷积的通道注意力模块,以自上而下的方式逐步融合跨级的多尺度特征,进一步地提升检测精度和效率。在多个公开的COD数据集上的实验结果表明,相较于SINet(Search Identification Net)、TINet(Textureaware Interactive guidance Network)和C2FNet(Context-aware Cross-level Fusion Network)等8种主流的方法,CANet表现更佳,且能够获取到丰富的伪装目标内部及边缘细节信息,而且在具有挑战性的COD10K数据集上结构度量指标相较于SINet提升了2.6个百分点。CANet性能优越,适用于医学上检测与人体组织相似的病灶区域、军事领域检测隐蔽目标等相关领域。 展开更多
关键词 伪装目标分割 边缘融合 压缩和激励注意力模块 深度可分离卷积 多尺度特征
下载PDF
基于多级特征融合与注意力模块的场景识别方法 被引量:1
20
作者 许华杰 秦远卓 杨洋 《计算机科学》 CSCD 北大核心 2022年第4期209-214,共6页
场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐... 场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐渐消失,从而导致场景识别错误的问题,提出了一种基于多级特征融合与注意力模块的场景识别方法。首先,将深度神经网络ResNet-18的特征提取部分划分出5个分支;然后,将5个分支输出的多级特征进行融合,利用融合后的特征进行场景识别和分类,以弥补丢失的目标信息;最后,在网络中加入改进的注意力模块,以达到着重学习场景图像中关键目标的目的,进一步提升识别效果。在多个场景数据集上进行实验对比,结果表明,所提方法在MIT-67,SUN-397和UIUC-Sports这3个场景数据集上的识别准确率分别达到了88.2%,79.9%和97.7%,相比目前主流的场景识别方法其具有更高的识别准确率。 展开更多
关键词 场景识别 卷积神经网络 特征融合 注意力模块
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部