期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多参数背景场误差模型在散射计资料台风风场反演中的应用 被引量:2
1
作者 钟剑 费建芳 +2 位作者 黄思训 黄小刚 程小平 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第15期575-581,共7页
利用散射计资料反演海面风场时,台风区域普遍存在降雨使得风场反演误差很大,引入降雨地球物理模型函数(GMF+Rain)及多解方案(MSS),结合二维变分(2DVAR)模糊去除思想风速反演误差很大程度减小,但风向反演误差仍有待进一步改善,如何进一... 利用散射计资料反演海面风场时,台风区域普遍存在降雨使得风场反演误差很大,引入降雨地球物理模型函数(GMF+Rain)及多解方案(MSS),结合二维变分(2DVAR)模糊去除思想风速反演误差很大程度减小,但风向反演误差仍有待进一步改善,如何进一步减小风向反演误差有待进一步研究.文章介绍了2DVAR模糊去除方法的基本思想,针对背景场误差较大时,2DVAR模糊去除风向误差较大,引入包含若干参数的背景场误差模型.基于台风个例数值试验结果,着重从理论分析角度讨论各参数关于2DVAR模糊去除效果的敏感性,进而提出最优参数设置方案以改善风向模糊去除效果.2006年"摩羯"台风QuikSCAT数据风场反演数值试验结果结合理论分析表明:引入多参数误差模型,通过设置粗糙误差概率等于0,2DVAR风向模糊去除效果明显改善;同时,背景场的影响可通过增大背景场误差方差,减小背景场误差相关尺度和减小粗糙误差概率而减小,进而减小在背景场误差较大情况下的风向反演误差. 展开更多
关键词 台风风场反演 二维变分 多参数误差模型 散射计资料
原文传递
Weighted Profile Least Squares Estimation for a Panel Data Varying-Coefficient Partially Linear Model
2
作者 Bin ZHOU Jinhong YOU +1 位作者 Qinfeng XU Gemai CHEN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第2期247-272,共26页
This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Balt... This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures. 展开更多
关键词 SEMIPARAMETRIC Panel data Local polynomial Weighted estimation Block bootstrap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部