新型电力系统中高比例可再生能源和高比例电力电子设备接入的特征带来异于传统电网下的谐波交互问题,多变流器拓扑的谐波耦合交互特性亟待研究。首先,基于谐波状态空间(harmonic state space,HSS)对多变流器并网系统(multiple grid-conn...新型电力系统中高比例可再生能源和高比例电力电子设备接入的特征带来异于传统电网下的谐波交互问题,多变流器拓扑的谐波耦合交互特性亟待研究。首先,基于谐波状态空间(harmonic state space,HSS)对多变流器并网系统(multiple grid-connected-converter system,MGCCS)建立考虑谐波耦合的谐波传递函数矩阵模型,综合考虑了系统各控制环节对状态变量的影响以及变流器的级联、并联。其次,基于所建HSS模型明确定义谐波耦合系数,并用于揭示多变流器拓扑的谐波耦合机理,分析级联、并联变流器谐波交互特性。然后,应用谐波耦合系数量化分析MGCCS中滤波电感、电流环、锁相环等关键参数对系统谐波交互的影响。最后,将HSS模型和Matlab/Simulink模型、RT-LAB模型的结果进行对比,验证了所建HSS模型的精确性,以及谐波耦合系数理论应用于系统交直流谐波交互分析的有效性。展开更多
AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for H...AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for HIL (hardware in the loop) simulators required for control, protection design and testing due to the large number of cells that must be simulated individually using very small time steps. This paper demonstrates the advantages of using a very small time step to simulate a MMC topology. The MMC is implemented on FPGA (fiel-programmable gate array) to simulate fast transient with a time step of 250 ns. The AC network and HVDC bus is simulated on the PC, with a slower time step of 10 μs to 20 μs. The simulator architecture and the components simulated on the FPGA and on the PC will be discussed, as well as the method allowing the interconnection of this slow and fast system.展开更多
Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locat...Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.展开更多
This paper presents the behavior analysis of modular multilevel converter under DC pole-to-pole short-circuit fault, which is an important issue in fault management, electrical system design and MMC based power system...This paper presents the behavior analysis of modular multilevel converter under DC pole-to-pole short-circuit fault, which is an important issue in fault management, electrical system design and MMC based power system protection and control. Firstly, the transient behavior is analyzed and the conduction overlap- ping angle γ, is defined. Secondly, seven possible short-circuit current paths induced by different γ values are identified, and the corresponding engineering short-circuit current calculation methods for both AC and DC sides are proposed. And then, the influences of impedance distribution factor κ and equivalent short-circuit resistance Rsc on short-circuit currents are elaborated the proposed analysis methods. Finally, case study is used to verify the effectiveness of展开更多
文摘新型电力系统中高比例可再生能源和高比例电力电子设备接入的特征带来异于传统电网下的谐波交互问题,多变流器拓扑的谐波耦合交互特性亟待研究。首先,基于谐波状态空间(harmonic state space,HSS)对多变流器并网系统(multiple grid-connected-converter system,MGCCS)建立考虑谐波耦合的谐波传递函数矩阵模型,综合考虑了系统各控制环节对状态变量的影响以及变流器的级联、并联。其次,基于所建HSS模型明确定义谐波耦合系数,并用于揭示多变流器拓扑的谐波耦合机理,分析级联、并联变流器谐波交互特性。然后,应用谐波耦合系数量化分析MGCCS中滤波电感、电流环、锁相环等关键参数对系统谐波交互的影响。最后,将HSS模型和Matlab/Simulink模型、RT-LAB模型的结果进行对比,验证了所建HSS模型的精确性,以及谐波耦合系数理论应用于系统交直流谐波交互分析的有效性。
文摘AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for HIL (hardware in the loop) simulators required for control, protection design and testing due to the large number of cells that must be simulated individually using very small time steps. This paper demonstrates the advantages of using a very small time step to simulate a MMC topology. The MMC is implemented on FPGA (fiel-programmable gate array) to simulate fast transient with a time step of 250 ns. The AC network and HVDC bus is simulated on the PC, with a slower time step of 10 μs to 20 μs. The simulator architecture and the components simulated on the FPGA and on the PC will be discussed, as well as the method allowing the interconnection of this slow and fast system.
基金supported by the National Natural Science Foundation of China (Grant No. 51177042)the Key Project of the National Twelfth FiveYear Research Program of China (Grant No. 2010BAA01B01)
文摘Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.
文摘This paper presents the behavior analysis of modular multilevel converter under DC pole-to-pole short-circuit fault, which is an important issue in fault management, electrical system design and MMC based power system protection and control. Firstly, the transient behavior is analyzed and the conduction overlap- ping angle γ, is defined. Secondly, seven possible short-circuit current paths induced by different γ values are identified, and the corresponding engineering short-circuit current calculation methods for both AC and DC sides are proposed. And then, the influences of impedance distribution factor κ and equivalent short-circuit resistance Rsc on short-circuit currents are elaborated the proposed analysis methods. Finally, case study is used to verify the effectiveness of