The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burge...The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.展开更多
The dynamic responses of a multilayer piezoelectric infinite hollow cylinder under electric potential excitation were obtained. The method of superposition was used to divide the solution into two parts, the part sati...The dynamic responses of a multilayer piezoelectric infinite hollow cylinder under electric potential excitation were obtained. The method of superposition was used to divide the solution into two parts, the part satisfying the mechanical boundary conditions and continuity conditions was first obtained by solving a system of linear equations; the other part was obtained by the separation of variables method. The present method is suitable for a multilayer piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric electric excitation. Dynamic responses of stress and electric potential are finally presented and analyzed.展开更多
With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is d...With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.展开更多
The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-le...The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
文摘The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 10432030) and Postdoctoral Foundation of China (No. 20040350712)
文摘The dynamic responses of a multilayer piezoelectric infinite hollow cylinder under electric potential excitation were obtained. The method of superposition was used to divide the solution into two parts, the part satisfying the mechanical boundary conditions and continuity conditions was first obtained by solving a system of linear equations; the other part was obtained by the separation of variables method. The present method is suitable for a multilayer piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric electric excitation. Dynamic responses of stress and electric potential are finally presented and analyzed.
基金supported by the Natural Science Foundation of Zhejiang Province under Grant No.Y604106the Scientific Research Foundation of Zhejiang Provincial Education Department under Grant No.20070568the Natural Science Foundation of Zhejiang Lishui University under Grant No.KZ08001
文摘With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.
文摘The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.