Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on th...In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.展开更多
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
基金Projects(60634020, 61074117) supported by the National Natural Science Foundation of China
文摘In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.