多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(N...多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(NA-MEMD)和互信息的方法,并用于脑电特征提取。首先使用NA-MEMD算法对多通道信号进行分解得到多尺度IMF分量,然后采用互信息法分别计算各尺度上信号与其IMF分量、噪声与其IMF分量、信号IMF分量与噪声IMF分量之间的相关性,接着根据敏感因子筛选包含有用信息的IMF分量,将其叠加得到对应的重构信号,最后采用共同空间模式(CSP)法对重构信号进行特征提取,再用支持向量机(SVM)实现分类。使用仿真数据和实际数据集BCI Competition IV Data Set 1进行测试,与现有的其他方法比较,验证了所提方法的有效性。展开更多
多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantific...多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantification analysis,简称RQA)和投票法多变量预测模型模式识别(voted variable predictive model based class discriminate,简称V-VPMCD)的故障识别方法。该方法利用了递归定量分析对非线性、非平稳信号分析的鲁棒性和样本质量不高时处理的优势,以VPMCD作为分类方法,并用投票法优化了VPMCD方法,提升了算法的稳定性和识别率。对滚动轴承不同程度、不同类型故障的模式识别实验表明,该优化算法具有较高的识别准确率和稳定性。展开更多
文摘多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(NA-MEMD)和互信息的方法,并用于脑电特征提取。首先使用NA-MEMD算法对多通道信号进行分解得到多尺度IMF分量,然后采用互信息法分别计算各尺度上信号与其IMF分量、噪声与其IMF分量、信号IMF分量与噪声IMF分量之间的相关性,接着根据敏感因子筛选包含有用信息的IMF分量,将其叠加得到对应的重构信号,最后采用共同空间模式(CSP)法对重构信号进行特征提取,再用支持向量机(SVM)实现分类。使用仿真数据和实际数据集BCI Competition IV Data Set 1进行测试,与现有的其他方法比较,验证了所提方法的有效性。
文摘多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantification analysis,简称RQA)和投票法多变量预测模型模式识别(voted variable predictive model based class discriminate,简称V-VPMCD)的故障识别方法。该方法利用了递归定量分析对非线性、非平稳信号分析的鲁棒性和样本质量不高时处理的优势,以VPMCD作为分类方法,并用投票法优化了VPMCD方法,提升了算法的稳定性和识别率。对滚动轴承不同程度、不同类型故障的模式识别实验表明,该优化算法具有较高的识别准确率和稳定性。