本文考虑非高斯噪声下传感器网络的状态估计问题.在机动目标跟踪、室内定位、水声导航等应用中,传感器的非高斯噪声会造成针对高斯噪声设计的常规状态估计算法精度下降.在现有针对单传感器系统的基于多变量Laplace(Multivariate Laplace...本文考虑非高斯噪声下传感器网络的状态估计问题.在机动目标跟踪、室内定位、水声导航等应用中,传感器的非高斯噪声会造成针对高斯噪声设计的常规状态估计算法精度下降.在现有针对单传感器系统的基于多变量Laplace(Multivariate Laplace,ML)鲁棒状态估计(Robust State Estimation based on ML,RSE-ML)算法基础上,本文借助信息滤波的特点,推导了针对多传感器系统的集中式RSE-ML(Centralized RSE-ML,CRSE-ML)算法,进一步利用一致性平均得到分布式RSE-ML(Distributed RSE-ML,DRSE-ML)算法.本文提出的DRSE-ML算法中利用ML建模非高斯噪声,借助变分贝叶斯方法估计噪声和状态参数,采用一致性算法进行分布式信息交互,克服了集中式算法通信和计算负担重的缺点,且具有自由参数少、估计精度高的特点.仿真结果表明,所提出的DRSE-ML算法估计精度优于现有相关算法,且能逼近集中式CRSE-ML算法的估计精度.展开更多
提出一种基于广域量测系统(wide area measurement system,WAMS)和数据采集与监控(supervisory control and data acquisition,SCADA)系统混合量测的电力系统状态估计方法,该方法充分利用相量测量单元(phasor measurement unit,PMU)量...提出一种基于广域量测系统(wide area measurement system,WAMS)和数据采集与监控(supervisory control and data acquisition,SCADA)系统混合量测的电力系统状态估计方法,该方法充分利用相量测量单元(phasor measurement unit,PMU)量测方程为线性方程的特点,将SCADA量测方程分解为两步线性化方程,并将PMU量测数据中的电压幅值平方、电流幅值平方和相角量测分别添加到2个线性化方程中,从而实现PMU和SCADA混合量测状态估计的非迭代计算,提高了计算效率。通过IEEE标准系统和波兰电网仿真算例,验证了所提方法的有效性。展开更多
广域同步测量系统(wide area measurement system,WAMS)作为一种量测手段,不可避免地会存在量测误差和坏数据。如果对WAMS量测数据不进行估计而直接应用,将有可能导致采取错误的控制策略,甚至恶化系统状态,造成严重后果。针对该问题,根...广域同步测量系统(wide area measurement system,WAMS)作为一种量测手段,不可避免地会存在量测误差和坏数据。如果对WAMS量测数据不进行估计而直接应用,将有可能导致采取错误的控制策略,甚至恶化系统状态,造成严重后果。针对该问题,根据WAMS实测数据,提出了一种电力系统动态过程中发电机状态变量估计的新方法。该方法将发电机转子运动方程与外部网络解耦,进而给出对WAMS实测功角轨迹进行估计的模型,提出了相应的坏数据检测和剔除方法以及整体算法流程。仿真结果表明该方法可以实时提供估计后的发电机状态信息,有效减小WAMS量测数据误差及坏数据的影响,为基于WAMS的各种动态应用与实时控制打下了基础。展开更多
文摘本文考虑非高斯噪声下传感器网络的状态估计问题.在机动目标跟踪、室内定位、水声导航等应用中,传感器的非高斯噪声会造成针对高斯噪声设计的常规状态估计算法精度下降.在现有针对单传感器系统的基于多变量Laplace(Multivariate Laplace,ML)鲁棒状态估计(Robust State Estimation based on ML,RSE-ML)算法基础上,本文借助信息滤波的特点,推导了针对多传感器系统的集中式RSE-ML(Centralized RSE-ML,CRSE-ML)算法,进一步利用一致性平均得到分布式RSE-ML(Distributed RSE-ML,DRSE-ML)算法.本文提出的DRSE-ML算法中利用ML建模非高斯噪声,借助变分贝叶斯方法估计噪声和状态参数,采用一致性算法进行分布式信息交互,克服了集中式算法通信和计算负担重的缺点,且具有自由参数少、估计精度高的特点.仿真结果表明,所提出的DRSE-ML算法估计精度优于现有相关算法,且能逼近集中式CRSE-ML算法的估计精度.
文摘提出一种基于广域量测系统(wide area measurement system,WAMS)和数据采集与监控(supervisory control and data acquisition,SCADA)系统混合量测的电力系统状态估计方法,该方法充分利用相量测量单元(phasor measurement unit,PMU)量测方程为线性方程的特点,将SCADA量测方程分解为两步线性化方程,并将PMU量测数据中的电压幅值平方、电流幅值平方和相角量测分别添加到2个线性化方程中,从而实现PMU和SCADA混合量测状态估计的非迭代计算,提高了计算效率。通过IEEE标准系统和波兰电网仿真算例,验证了所提方法的有效性。
文摘广域同步测量系统(wide area measurement system,WAMS)作为一种量测手段,不可避免地会存在量测误差和坏数据。如果对WAMS量测数据不进行估计而直接应用,将有可能导致采取错误的控制策略,甚至恶化系统状态,造成严重后果。针对该问题,根据WAMS实测数据,提出了一种电力系统动态过程中发电机状态变量估计的新方法。该方法将发电机转子运动方程与外部网络解耦,进而给出对WAMS实测功角轨迹进行估计的模型,提出了相应的坏数据检测和剔除方法以及整体算法流程。仿真结果表明该方法可以实时提供估计后的发电机状态信息,有效减小WAMS量测数据误差及坏数据的影响,为基于WAMS的各种动态应用与实时控制打下了基础。