Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Ana...Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.展开更多
Variable Rate Technology (VRT) takes within-field variability into consideration and aims to match resource application to crop requirement. Even though Texas is the most important cotton producing state in the US, ...Variable Rate Technology (VRT) takes within-field variability into consideration and aims to match resource application to crop requirement. Even though Texas is the most important cotton producing state in the US, the rate of VRT adoption is very low here. Hence, analyzing the factors influencing the adoption and providing a regional estimate of the impact of VRT adoption on cotton yield is very important. This study used the 2009 Southern Cotton Precision Farming Survey to analyze the farm and farmer characteristics affecting the adoption of VRT among Texas cotton farmers and to empirically estimate the impact of adoption of VRT on cotton yield in Texas. A two-stage least square procedure with a logistic regression model in the first stage and a multiple linear regression model in the second stage was used to analyze the data. The study revealed that there are significant regional differences in adoption pattern within the state of Texas; and the farmers from the coastal region, where there is higher within-field variability, were more likely to adopt VRT compared to other regions. Younger farmers, farmers managing larger farms, and farmers who use computers for farming operations were more likely to adopt VRT. The results also showed that, on an average, the adoption of VRT does not lead to significant yield improvements for cotton in Texas. Since the impact of VRT adoption on yield is not significant, the source of economic advantage of VRT adoption in Texas may be the reduction of input cost.展开更多
文摘Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.
文摘Variable Rate Technology (VRT) takes within-field variability into consideration and aims to match resource application to crop requirement. Even though Texas is the most important cotton producing state in the US, the rate of VRT adoption is very low here. Hence, analyzing the factors influencing the adoption and providing a regional estimate of the impact of VRT adoption on cotton yield is very important. This study used the 2009 Southern Cotton Precision Farming Survey to analyze the farm and farmer characteristics affecting the adoption of VRT among Texas cotton farmers and to empirically estimate the impact of adoption of VRT on cotton yield in Texas. A two-stage least square procedure with a logistic regression model in the first stage and a multiple linear regression model in the second stage was used to analyze the data. The study revealed that there are significant regional differences in adoption pattern within the state of Texas; and the farmers from the coastal region, where there is higher within-field variability, were more likely to adopt VRT compared to other regions. Younger farmers, farmers managing larger farms, and farmers who use computers for farming operations were more likely to adopt VRT. The results also showed that, on an average, the adoption of VRT does not lead to significant yield improvements for cotton in Texas. Since the impact of VRT adoption on yield is not significant, the source of economic advantage of VRT adoption in Texas may be the reduction of input cost.