多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantific...多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantification analysis,简称RQA)和投票法多变量预测模型模式识别(voted variable predictive model based class discriminate,简称V-VPMCD)的故障识别方法。该方法利用了递归定量分析对非线性、非平稳信号分析的鲁棒性和样本质量不高时处理的优势,以VPMCD作为分类方法,并用投票法优化了VPMCD方法,提升了算法的稳定性和识别率。对滚动轴承不同程度、不同类型故障的模式识别实验表明,该优化算法具有较高的识别准确率和稳定性。展开更多
文摘多变量预测模型模式识别(variable predictive model based class discriminate,简称VPMCD)利用样本特征值内在的相关性来建立特征学习模型,但是当训练样本较少时会导致模型预测不准确,因此提出了基于递归定量分析(recurrence quantification analysis,简称RQA)和投票法多变量预测模型模式识别(voted variable predictive model based class discriminate,简称V-VPMCD)的故障识别方法。该方法利用了递归定量分析对非线性、非平稳信号分析的鲁棒性和样本质量不高时处理的优势,以VPMCD作为分类方法,并用投票法优化了VPMCD方法,提升了算法的稳定性和识别率。对滚动轴承不同程度、不同类型故障的模式识别实验表明,该优化算法具有较高的识别准确率和稳定性。