In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow...In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps.展开更多
Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equat...Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.展开更多
This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting ou...This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting out of a thin layer of the porous metal which is pasted on the structural high strength metal. The contents include the consideration on the computational model of heat transfer through a layer of porous material, the concrete modeling and the analysis of the model, the numerical survey of key parameters for both the two-layer porous materials and the heat transfer fluid flow passing through the model channels. The results revealed that the constructed system is reasonable. Proposed an evaluation formula for the porous material heat transfer efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.5137610051306018+4 种基金51206087and 51179091)the National Key Technology Research and Development Program(Grant No.2011BAF03B01)State Key Laboratory for Hydroscience and Engineering(Grant Nos.2014-KY-05 and 2015-E-03)Laboratory of Science and Technology on Waterjet Propulsion
文摘In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps.
文摘Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.
文摘This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting out of a thin layer of the porous metal which is pasted on the structural high strength metal. The contents include the consideration on the computational model of heat transfer through a layer of porous material, the concrete modeling and the analysis of the model, the numerical survey of key parameters for both the two-layer porous materials and the heat transfer fluid flow passing through the model channels. The results revealed that the constructed system is reasonable. Proposed an evaluation formula for the porous material heat transfer efficiency.