期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
基于多向核熵成分分析的微生物发酵过程多阶段划分及故障监测 被引量:7
1
作者 常鹏 王普 高学金 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第3期650-656,共7页
针对多向核主元分析法(MKPCA)在监控动态非线性和多模态间歇生产过程故障的不足,提出一种基于物理信息熵的多阶段多向核熵成分分析(multiple sub-stage multi-way kernel entropy component analysis,MSMKECA)的新方法用于故障监控。该... 针对多向核主元分析法(MKPCA)在监控动态非线性和多模态间歇生产过程故障的不足,提出一种基于物理信息熵的多阶段多向核熵成分分析(multiple sub-stage multi-way kernel entropy component analysis,MSMKECA)的新方法用于故障监控。该方法首先通过核映射将数据从低维空间映射到高维特征空间;其次在高维特征空间依据熵结构信息计算每个时刻数据矩阵的相似度指标进行阶段划分,将间歇过程划分为各稳定阶段和各过渡阶段,并在过渡阶段用时变的协方差代替固定协方差;最后在划分的阶段里分别建立模型进行间歇过程监测解决间歇过程的动态非线性和多阶段特性;将所提出的算法应用于青霉素发酵仿真系统的在线监测,验证了该方法的有效性。 展开更多
关键词 间歇过程 多向主元分析 多向成分分析 阶段划分 故障监测
下载PDF
基于核熵成分分析结合独立元分析的故障检测方法 被引量:1
2
作者 刘春菊 刘春玲 李召 《仪表技术与传感器》 CSCD 北大核心 2016年第9期94-97,共4页
针对工业过程具有多变量、非线性、非高斯等特点,提出了一种基于核熵成分分析与独立元分析的(KECA-ICA)的故障检测方法。首先通过核熵成分分析对数据进行降维,保证了信息量损失最小;然后对熵成分的得分矩阵进行ICA分解,并根据监测量SPE... 针对工业过程具有多变量、非线性、非高斯等特点,提出了一种基于核熵成分分析与独立元分析的(KECA-ICA)的故障检测方法。首先通过核熵成分分析对数据进行降维,保证了信息量损失最小;然后对熵成分的得分矩阵进行ICA分解,并根据监测量SPE和I2的状态判断系统是否发生故障。通过对TE(Tennessee Eastman)过程的仿真研究,验证了该方法的可行性与有效性,并且对检测效果的鲁棒性能进行了分析。 展开更多
关键词 成分分析 独立分析 鲁棒性 故障检测
下载PDF
基于核熵独立成分分析的故障检测方法 被引量:4
3
作者 郭金玉 王哲 李元 《化工学报》 EI CSCD 北大核心 2022年第8期3647-3658,F0003,共13页
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大... 传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求I^(2)和SPE统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman(TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 展开更多
关键词 故障检测 信息 密度估计 成分分析 独立成分分析
下载PDF
基于核独立成分分析的极化SAR图像相干斑抑制 被引量:9
4
作者 张中山 余洁 +2 位作者 燕琴 孟云闪 赵争 《测绘学报》 EI CSCD 北大核心 2011年第3期289-295,共7页
为提高极化合成孔径雷达图像相干斑抑制的效果,提出基于核独立成分分析(kernel independent component analysis,KICA)的极化SAR图像相干斑抑制方法。该方法将三个通道的极化信息作为输入数据,经过KICA变换得到三个独立分量,取相干斑指... 为提高极化合成孔径雷达图像相干斑抑制的效果,提出基于核独立成分分析(kernel independent component analysis,KICA)的极化SAR图像相干斑抑制方法。该方法将三个通道的极化信息作为输入数据,经过KICA变换得到三个独立分量,取相干斑指数最小的分量作为滤波后的信息图像。由于将核函数引入到独立成分分析(independent component analysis,ICA)中,使在ICA中无法线性可分的信息在高维空间中达到线性可分。采用旧金山地区的AIRSAR数据与日本新潟地区的PISAR数据分别进行试验,并用相干斑指数和边缘保持系数从客观上进行评价。试验表明,与ICA算法相比,KICA算法具有更好的滤波效果和保持边缘信息的能力。 展开更多
关键词 极化SAR 独立成分分析 独立成分分析 相干斑
下载PDF
基于红外光谱-小波变换-核独立成分分析的地黄炮制过程终点确定 被引量:9
5
作者 张西安 董春红 +2 位作者 孙晓丽 唐艳霞 王国庆 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期179-181,185,共4页
对地黄炮制过程采集样品进行进行红外光谱(IR)测试,利用连续小波变换(CWT)对原始IR数据进行噪音滤除与背景扣除,再对混合信号进行核独立成分分析(KICA),提取其中能够体现纯组分光谱特征轮廓的独立组分(IC)信息,根据独立组分及其相对强... 对地黄炮制过程采集样品进行进行红外光谱(IR)测试,利用连续小波变换(CWT)对原始IR数据进行噪音滤除与背景扣除,再对混合信号进行核独立成分分析(KICA),提取其中能够体现纯组分光谱特征轮廓的独立组分(IC)信息,根据独立组分及其相对强度变化趋势表征地黄炮制过程,建立了地黄炮制过程的终点判断的新方法. 展开更多
关键词 独立成分分析 红外光谱法 小波变换 过程分析 地黄
下载PDF
基于核熵成分分析的模拟电路早期故障诊断方法 被引量:16
6
作者 张朝龙 何怡刚 +2 位作者 袁莉芬 王金平 佐磊 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第3期675-684,共10页
针对模拟电路早期故障诊断中存在部分早期故障类别重叠的难点,提出了一种基于核熵成分分析的故障诊断方法。首先应用小波分形分析计算被测电路时域响应信号的小波分形维特征,然后利用核熵成分分析方法进行特征的优选与降维,最后将优选... 针对模拟电路早期故障诊断中存在部分早期故障类别重叠的难点,提出了一种基于核熵成分分析的故障诊断方法。首先应用小波分形分析计算被测电路时域响应信号的小波分形维特征,然后利用核熵成分分析方法进行特征的优选与降维,最后将优选和降维后的特征应用最小二乘支持向量机多类分类器进行区分,其中用于识别重叠故障类别的最小二乘支持向量机的参数由量子粒子群算法优化选择。仿真结果表明,本文提出的核熵成分分析方法能较好地获取故障响应信号的本质特征,并表现出了比其他特征提取方法更好的性能,有助于提高模拟电路早期故障的诊断正确率。 展开更多
关键词 模拟电路 早期故障诊断 小波分形分析 成分分析 最小二乘支持向量机 量子粒子群算法
下载PDF
基于核熵成分分析的流式数据自动分群方法 被引量:13
7
作者 董明利 马闪闪 +1 位作者 张帆 潘志康 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期206-211,共6页
针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K-me... 针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K-means算法的分类器,并采用一种基于向量夹角的最佳聚类数确定方法,最终获得细胞的分类标签。对实验获得的淋巴细胞免疫表型分析数据进行处理,结果表明,该方法能够实现细胞的快速、自动分群,整体分群准确率能够达到97%以上,操作简单便捷,提高了细胞分析的效率。 展开更多
关键词 流式细胞术 自动分群 成分分析 K-MEANS算法 余弦相似度
下载PDF
基于上下文信息和核熵成分分析的目标分类算法 被引量:7
8
作者 潘泓 朱亚平 +1 位作者 夏思宇 金立左 《电子学报》 EI CAS CSCD 北大核心 2016年第3期580-586,共7页
结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分... 结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分量中选出最能代表目标几何结构信息的特征分量,将其投影到这些特征分量张成的子空间上可得到降维CKD特征.在Caltech-101和CIFAR-10的测试结果表明,CKD的分类性能不仅明显优于其它局部特征描述子,还优于多数基于稀疏表示和深度学习等复杂模型的目标分类算法. 展开更多
关键词 上下文描述子 成分分析 特征降维 目标分类
下载PDF
基于核独立成分分析的人脸识别研究 被引量:3
9
作者 尹克重 龚卫国 +2 位作者 李伟红 梁毅雄 张红梅 《计算机应用》 CSCD 北大核心 2005年第6期1324-1326,共3页
在人脸识别中提出一种基于非线性子空间的核独立成分分析(KICA)方法。在简单介绍了ICA方法的基础上,对KICA方法的基本原理和算法作了较为详细的描述。为了验证基于KICA和ICA的人脸识别方法的识别效果,进行了对比实验和分析。实验和分析... 在人脸识别中提出一种基于非线性子空间的核独立成分分析(KICA)方法。在简单介绍了ICA方法的基础上,对KICA方法的基本原理和算法作了较为详细的描述。为了验证基于KICA和ICA的人脸识别方法的识别效果,进行了对比实验和分析。实验和分析结果表明,在人脸识别中,基于KICA的方法优于基于ICA的方法。 展开更多
关键词 独立成分分析 独立成分分析 广义方差 人脸识别
下载PDF
基于核熵成分分析的热轧带钢自适应聚类分析 被引量:5
10
作者 何飞 徐金梧 +1 位作者 梁治国 王晓晨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期1732-1738,共7页
为提高热轧带钢力学性能离线检测的针对性和生产过程控制的实时性,提出利用聚类分析方法实现生产状态的聚类,对错分或离群样本进行力学性能的重点检测。常用的高斯核主成分聚类分析中假设数据服从正态分布,以方差大小提取核主成分,而实... 为提高热轧带钢力学性能离线检测的针对性和生产过程控制的实时性,提出利用聚类分析方法实现生产状态的聚类,对错分或离群样本进行力学性能的重点检测。常用的高斯核主成分聚类分析中假设数据服从正态分布,以方差大小提取核主成分,而实际生产数据分布复杂,拟采用核熵主成分分析,并自适应选取核参数和聚类数,实现生产状态的自适应聚类。利用实际生产数据进行方法验证,与核主成分聚类分析相比具有更好的聚类结果,聚类正确率从86.23%提高到96.51%,更加有效地提高了质量检测的针对性。 展开更多
关键词 热轧带钢 成分分析 聚类分析 力学性能
下载PDF
基于核独立成分分析的盲源信号分离 被引量:10
11
作者 姚伏天 金连甫 戴光 《计算机工程与应用》 CSCD 北大核心 2004年第6期44-46,共3页
独立成分分析(ICA)已经广泛用于盲源信号的分离(BSS)。论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。实验表明在盲源信号分离中,基于核空间的ICA与其他典型ICA和PCA... 独立成分分析(ICA)已经广泛用于盲源信号的分离(BSS)。论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。实验表明在盲源信号分离中,基于核空间的ICA与其他典型ICA和PCA算法相比更具有准确性和鲁棒性。 展开更多
关键词 独立成分分析(ICA) 空间 盲源信号分离(BSS) 成分分析(PCA)
下载PDF
基于独立成分分析和核向量机的人脸识别 被引量:21
12
作者 彭中亚 程国建 《计算机工程》 CAS CSCD 北大核心 2010年第7期193-194,共2页
提出利用独立成分分析提取人脸特征并用核向量机进行识别的方法。独立成分分析能更本质地描述图像特征,通过选择合适的特征个数达到较高的识别准确率。利用核向量机进行分类判决,可以快速地对大样本数据进行准确分类,产生较少的支持向... 提出利用独立成分分析提取人脸特征并用核向量机进行识别的方法。独立成分分析能更本质地描述图像特征,通过选择合适的特征个数达到较高的识别准确率。利用核向量机进行分类判决,可以快速地对大样本数据进行准确分类,产生较少的支持向量。实验证明了该方法的可行性和有效性,在ORL人脸数据库上达到了94.38%的准确率。 展开更多
关键词 人脸识别 独立成分分析 向量机 支持向量机
下载PDF
基于独立成分分析与核典型相关分析的WLAN室内定位方法 被引量:4
13
作者 张勇 史雅楠 +1 位作者 黄杰 李飞腾 《计算机应用研究》 CSCD 北大核心 2016年第12期3817-3821,共5页
接收信号强度(received signal strength,RSS)在WLAN室内定位环境中存在时变特性,降低了WLAN定位环境中RSS信号与位置信息之间的相关性,致使定位精度降低。针对这一问题,提出通过利用独立成分分析(independent component analysis,ICA)... 接收信号强度(received signal strength,RSS)在WLAN室内定位环境中存在时变特性,降低了WLAN定位环境中RSS信号与位置信息之间的相关性,致使定位精度降低。针对这一问题,提出通过利用独立成分分析(independent component analysis,ICA)对RSS信号进行数据降维和去相关处理,提取独立分量;然后采用核典型相关分析(kernel canonical correlation analysis,KCCA)来提取独立分量与位置信息之间的典型相关特征;最后结合传统定位算法如加权K近邻法(weighted K nearest neighbors,WKNN)、支持向量机(support vector machine,SVM)算法实现定位。实验结果表明,传统定位算法WKNN、SVM算法通过运用ICA与KCCA特征提取后再进行定位其定位精度得到了提高。 展开更多
关键词 无线局域网 室内定位 接收信号强度 独立成分分析 典型相关分析
下载PDF
基于多尺度核独立成分分析的柴油机故障诊断 被引量:8
14
作者 刘敏 李志宁 +2 位作者 张英堂 范红波 詹超 《振动.测试与诊断》 EI CSCD 北大核心 2017年第5期892-897,共6页
为提高利用缸盖振动信号进行柴油机故障诊断的精度和速度,提出了一种基于多尺度核独立成分分析提取故障敏感频带的柴油机故障诊断方法。首先,提出奇异值能量标准谱对缸盖振动信号中的微弱冲击特征进行增强;然后,对信号进行固有时间尺度... 为提高利用缸盖振动信号进行柴油机故障诊断的精度和速度,提出了一种基于多尺度核独立成分分析提取故障敏感频带的柴油机故障诊断方法。首先,提出奇异值能量标准谱对缸盖振动信号中的微弱冲击特征进行增强;然后,对信号进行固有时间尺度分解,并基于相关性准则选择有效频带分量;最后,利用核独立成分分析消除有效频带之间的频带混叠,得到故障敏感信息集中的独立频带,并计算其自回归模型(auto regression model,简称AR)参数、模糊熵和标准化能量矩作为特征向量输入核极限学习机(kernel extreme learning machine,简称KELM)进行柴油机故障诊断。试验分析结果表明,该方法可以快速准确地提取缸盖振动信号中的柴油机故障敏感频带,增强故障敏感特征,故障诊断准确率达到99.65%。 展开更多
关键词 奇异值能量标准谱 固有时间尺度分解 独立成分分析 故障敏感频带 柴油机故障诊断
下载PDF
基于核独立成分分析的盲多用户检测算法 被引量:5
15
作者 席聪 张太镒 刘枫 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第4期373-376,共4页
针对部分多用户检测算法需要对信道参数进行估计的缺点,提出了一种基于核独立成分分析的盲多用户检测算法.该算法根据源信号的不同分布情况,在重建核希尔伯特空间内选取不同的非线性函数作为对比函数,将信号从低维空间映射到高维空间.... 针对部分多用户检测算法需要对信道参数进行估计的缺点,提出了一种基于核独立成分分析的盲多用户检测算法.该算法根据源信号的不同分布情况,在重建核希尔伯特空间内选取不同的非线性函数作为对比函数,将信号从低维空间映射到高维空间.在高维空间,接收端利用已知信息,将目标用户扩频码作为解混矩阵的初始值,利用自适应方法进行迭代,有效地解决了盲信号分离的无序性,实现了目标用户信号的提取.仿真实验表明,该算法的误码率性能在用户数量增大和远近效应严重的情况下都远优于基于匹配滤波器的单用户检测器,与传统独立成分分析方法相比更具灵活性和鲁棒性. 展开更多
关键词 多用户检测 独立成分分析 盲信号分离 重建希尔伯特空间
下载PDF
集成众核上快速独立成分分析降维并行算法 被引量:5
16
作者 方民权 张卫民 周海芳 《计算机研究与发展》 EI CSCD 北大核心 2016年第5期1136-1146,共11页
高光谱遥感影像快速独立成分分析(fast independent component analysis,FastICA)降维过程包含大规模矩阵计算及大量迭代计算.通过热点分析,面向集成众核(many integrated core,MIC)架构设计了协方差矩阵计算、白化处理和ICA迭代等热点... 高光谱遥感影像快速独立成分分析(fast independent component analysis,FastICA)降维过程包含大规模矩阵计算及大量迭代计算.通过热点分析,面向集成众核(many integrated core,MIC)架构设计了协方差矩阵计算、白化处理和ICA迭代等热点并行方案,提出和实现一种M-FastICA并行降维算法,并构建算法性能模型;基于集成众核研究并行程序优化策略,针对各热点并行方案提出一系列优化策略,特别是创新性地提出一种下三角阵负载均衡方法,并量化测试其优化效果.实验结果显示M-FastICA算法最高可加速42倍,比24核CPU多线程并行快2.2倍;探讨了波段数与并行程序性能的关系;实验数据验证了算法性能模型的准确性. 展开更多
关键词 集成众 独立成分分析 高光谱影像降维 性能模型 下三角阵负载均衡
下载PDF
基于核熵成分分析的高光谱遥感图像分类算法 被引量:2
17
作者 王瀛 郭雷 梁楠 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期1597-1601,共5页
根据核熵成分分析(KECA)的特点提出了基于凸面几何学概念的样本集选取方法和以特征空间光谱角为相似性度量的C-均值分类算法,并将其用于高光谱遥感图像分类。在HYDICE高光谱数据上的试验表明,本文提出的算法可以有效地提高分类精度。
关键词 信息处理技术 高光谱图像 RENYI 图像分类 成分分析
下载PDF
基于核熵成分分析的油中溶解气体浓度预测 被引量:5
18
作者 江风云 唐勇波 《控制工程》 CSCD 北大核心 2020年第8期1419-1424,共6页
针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间... 针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间重构;最后采用Renyi熵信息测度确定KECA核参数,用KECA对重构相空间提取核熵成分作为支持向量机(Support Vector Machine,SVM)的输入,建立变压器油中溶解气体浓度预测模型。用本文方法、单变量时间序列方法、多元变量时间序列方法测试60例样本,本文方法具有最小的均方根误差,为0.1607。实验结果表明,本文提出的方法具有较优的预测精度和泛化能力。 展开更多
关键词 变压器 油中溶解气体 成分分析 RENYI 预测
下载PDF
基于核独立成分分析的人脸识别 被引量:6
19
作者 张燕昆 刘重庆 《光学技术》 CAS CSCD 2004年第5期613-615,622,共4页
研究一种基于核独立成分分析的人脸识别方法。利用支持向量机的核函数思想,将原始人脸图像向量映射到高维特征空间,然后在高维特征空间中进行独立成分分析(ICA),提取非线性独立成分作为特征向量进行分类识别。实验结果表明该方法要比常... 研究一种基于核独立成分分析的人脸识别方法。利用支持向量机的核函数思想,将原始人脸图像向量映射到高维特征空间,然后在高维特征空间中进行独立成分分析(ICA),提取非线性独立成分作为特征向量进行分类识别。实验结果表明该方法要比常规的基于ICA和PCA的人脸识别算法的识别率要高。 展开更多
关键词 人脸识别 主元分析 独立成分分析 主元分析
下载PDF
结合独立成分分析和核向量机进行人脸识别 被引量:1
20
作者 彭中亚 程国建 曹庆年 《计算机工程与应用》 CSCD 北大核心 2009年第25期154-156,共3页
在人脸识别过程中,首先利用独立成分分析得到独立的人脸基影像,所提取的特征就是人脸图像在基影像上的投影系数,通过选择合适的特征个数可以达到较高的识别准确率。然后采用支持向量机和核向量机分别对待识别图像在基影像上的投影系数... 在人脸识别过程中,首先利用独立成分分析得到独立的人脸基影像,所提取的特征就是人脸图像在基影像上的投影系数,通过选择合适的特征个数可以达到较高的识别准确率。然后采用支持向量机和核向量机分别对待识别图像在基影像上的投影系数进行分类判决,结果显示二者都能达到较高的识别准确率,但随着特征个数的增加,核向量机的准确率更高,训练时间更短,支持向量更少。实验表明方法可行有效的。 展开更多
关键词 人脸识别 独立成分分析 向量机 支持向量机
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部