期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多周期组件时空神经网络的路网通行速度预测 被引量:6
1
作者 杨建喜 郁超顺 +3 位作者 李韧 杜利芳 蒋仕新 王笛 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第3期112-119,139,共9页
针对当前路网通行速度预测方法存在的中长周期预测准确性和稳定性不足、自适应路网拓扑空间关系建模能力有待进一步提升等问题,以多尺度卷积算子及门控循环单元为核心单元,提出一种面向路网通行速度预测任务的多周期组件时空神经网络模... 针对当前路网通行速度预测方法存在的中长周期预测准确性和稳定性不足、自适应路网拓扑空间关系建模能力有待进一步提升等问题,以多尺度卷积算子及门控循环单元为核心单元,提出一种面向路网通行速度预测任务的多周期组件时空神经网络模型。首先,根据路网交通感知数据的周期特性,将其规约为周、日和近期这3种不同粒度的时间-空间-特征三维矩阵,并输入至3个共享网络结构的周期组件。其次,在每部分组件中,利用多尺度卷积核捕获多因素非线性相关性与不同空间视野大小的路网节点空间相关性。然后,对每个路网节点的时序特征使用门控循环单元提取交通数据长时依赖关系,引入残差学习框架,提高网络训练效率并防止梯度弥散。最后,自适应加权融合通过预测卷积层的每部分周期组件预测结果生成预测时段内路网交通通行速度。为验证所提方法的有效性,基于两个公开的交通状态数据集进行实验分析,并选取当前主流的深度神经网络模型作为对比基线模型。结果表明,所提方法在可接受的执行时间内,在两个数据集上平均绝对误差、平均平方误差和平均绝对百分比误差分别为2.55、3.94和10.75%,1.57、3.52和3.44%,在预测准确性与中长时多步预测稳定性方面均优于其他基准方法。 展开更多
关键词 智能交通 多周期组件时空神经网络 卷积神经网络 通行速度预测 门控循环单元
下载PDF
基于视频时空特征学习的近岸海浪周期检测
2
作者 宋巍 陈媛媛 +1 位作者 贺琪 杜艳玲 《激光与光电子学进展》 CSCD 北大核心 2021年第24期106-116,共11页
近岸海浪周期检测对于近岸精细化海洋预报至关重要。为此,提出一种新的基于视频时空特征学习的近岸海浪周期自动化检测方法。所提方法以连续海浪视频帧为输入,首先利用二维卷积神经网络(2D-CNN)提取视频帧的空间特征,将空间特征在时间... 近岸海浪周期检测对于近岸精细化海洋预报至关重要。为此,提出一种新的基于视频时空特征学习的近岸海浪周期自动化检测方法。所提方法以连续海浪视频帧为输入,首先利用二维卷积神经网络(2D-CNN)提取视频帧的空间特征,将空间特征在时间维度上拼接成序列,再通过一维卷积神经网络(1D-CNN)提取时间维度特征,这种复合卷积神经网络(CNN-2D1D)能够实现海浪时空信息的有效融合,最后采用注意力机制对融合后的特征进行权重调整,并将所得结果线性映射为海浪周期。将所提方法与基于VGG16网络的单纯空间特征的检测方法和基于ConvLSTM和三维卷积(C3D)网络的时空特征融合的检测方法进行对比。实验结果表明,C3D和CNN-2D1D的检测精度最高,平均绝对误差分别为0.47 s和0.48 s,但CNN-2D1D比C3D的检测结果更稳定,均方根误差分别为0.66和0.81,且CNN-2D1D需要的训练参数更少,这表明所提方法在波浪周期检测中更有效。 展开更多
关键词 海洋光学 波浪周期检测 时空融合特征 融合卷积神经网络 近岸海浪监控视频 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部