The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flangin...The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flanging process parameters with considerations of the multiple response (the average flanging height, regular flanging and maximum strain) is introduced. Various flanging parameters, such as the blank inner radius rb, blank inner width B0, are considered. An orthogonal array is used for the experimental design. Multiple response values are obtained using finite element analysis (FEA). Optimal process parameters are determined by the grey relational grade obtained from the grey relational analysis for multi-performance characteristics (flanging height, regular flanging and maximum strain). Analysis of variance (ANOVA) for the grey relational grade is implemented. The results showed good agreement with the experiment result. Grey relational analysis can be applied in multiple response optimi-zation designs.展开更多
[ Objective] The aim was to use response surface methodology to determine optimum conditions for extraction of polysaccharides from Tegillarca granosa. [ Method] Response surface methodology with three-factors and thr...[ Objective] The aim was to use response surface methodology to determine optimum conditions for extraction of polysaccharides from Tegillarca granosa. [ Method] Response surface methodology with three-factors and throe-levels was carried out for optimizing the extraction process of polysacchafides from Tegillarca granosa. A central composite des(gn including independent variables, such as extraction temperature (A), extraction time (B), and ethanol concentration (C) was obtained through Box-Benhnken central combination design. Selected response which evaluates the extraction process was polysacchadde yield. [ Result] The independent variable with the largest effect on response was ethanol concentration (C). The optimum extraction conditions were found to be extraction temperature 69.6℃, extraction time 6.2 h, and ethanol concen- tration of 78% (V/V), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 1. 635%. [ Coaclusioa] Study on the extraction of polysaccharides from Tegillarca granosa could provide certain theoretical direction for extracting polysaccharides from Tegillarca granosa on a large scale.展开更多
基金Project (No. 50475020) supported by the National Natural ScienceFoundation of China
文摘The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. In this paper, the use of grey relational analysis for optimizing the square hole flanging process parameters with considerations of the multiple response (the average flanging height, regular flanging and maximum strain) is introduced. Various flanging parameters, such as the blank inner radius rb, blank inner width B0, are considered. An orthogonal array is used for the experimental design. Multiple response values are obtained using finite element analysis (FEA). Optimal process parameters are determined by the grey relational grade obtained from the grey relational analysis for multi-performance characteristics (flanging height, regular flanging and maximum strain). Analysis of variance (ANOVA) for the grey relational grade is implemented. The results showed good agreement with the experiment result. Grey relational analysis can be applied in multiple response optimi-zation designs.
基金Supported by Key Scientific Research Program of Wannan MedicalCollege ( WK2012Z208)
文摘[ Objective] The aim was to use response surface methodology to determine optimum conditions for extraction of polysaccharides from Tegillarca granosa. [ Method] Response surface methodology with three-factors and throe-levels was carried out for optimizing the extraction process of polysacchafides from Tegillarca granosa. A central composite des(gn including independent variables, such as extraction temperature (A), extraction time (B), and ethanol concentration (C) was obtained through Box-Benhnken central combination design. Selected response which evaluates the extraction process was polysacchadde yield. [ Result] The independent variable with the largest effect on response was ethanol concentration (C). The optimum extraction conditions were found to be extraction temperature 69.6℃, extraction time 6.2 h, and ethanol concen- tration of 78% (V/V), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 1. 635%. [ Coaclusioa] Study on the extraction of polysaccharides from Tegillarca granosa could provide certain theoretical direction for extracting polysaccharides from Tegillarca granosa on a large scale.