期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
多块网格网络并行计算中的负载分配研究 被引量:3
1
作者 李育斌 杨树池 乔志德 《空气动力学学报》 CSCD 北大核心 2001年第3期271-276,共6页
针对CFD中多块网格计算的特点 ,并使用MPI网络并行系统 ,对某战斗机绕流进行了基于三维Euler方程的并行计算。主要研究了多块网格并行计算中负载的分配方法 ,发展了负载自动分配和网格自动重分区程序。计算结果表明 :并行计算结果和实... 针对CFD中多块网格计算的特点 ,并使用MPI网络并行系统 ,对某战斗机绕流进行了基于三维Euler方程的并行计算。主要研究了多块网格并行计算中负载的分配方法 ,发展了负载自动分配和网格自动重分区程序。计算结果表明 :并行计算结果和实验结果完全吻合 ,8个节点机的并行效率达到了 89%。 展开更多
关键词 EULER方程 计算流体力学 MPI 负载均衡 CFD 战斗机绕流 多块网格网络并行计算
下载PDF
多块网格中的块隐式方法
2
作者 李增耀 陶文铨 王秋旺 《工程热物理学报》 EI CAS CSCD 北大核心 2002年第3期351-353,共3页
本文实现了逐点扫描的块隐式算法,并根据其特点,提出了一种基于该算法的多块网格方法.通过对几个具有基准解问题的数值计算发现:该算法相对于SIMPLE算法而言,其收敛速度较快;本文所提出的多块网格方法是可行的.
关键词 隐式算法 多块网络 SCSD SIMPLE 逐点扫描
下载PDF
运输类飞机/发动机干扰流场纵、横向一体化数值分析 被引量:6
3
作者 李杰 李凤蔚 +1 位作者 陈志敏 鄂秦 《西北工业大学学报》 EI CAS CSCD 北大核心 2002年第3期343-346,共4页
发展了一种计及粘性效应的运输类飞机 /发动机气动干扰纵、横向影响的一体化数值分析方法。采用多块网格技术及求解椭圆型偏微分方程方法生成贴体、与边界正交的多块对接网格。对全机 /发动机复杂外形的纵、横向绕流流场进行分区求解。... 发展了一种计及粘性效应的运输类飞机 /发动机气动干扰纵、横向影响的一体化数值分析方法。采用多块网格技术及求解椭圆型偏微分方程方法生成贴体、与边界正交的多块对接网格。对全机 /发动机复杂外形的纵、横向绕流流场进行分区求解。利用 Euler方程和可压缩湍流边界层积分方程 ,研究翼面有粘与无粘强干扰流动。计算结果表明 ,无论对带翼吊还是尾吊发动机的全机构型 ,均获得了与实验值吻合良好的结果。 展开更多
关键词 运输类飞机 发动机 干扰流场 一体化数值分析 多块网络技术 流场分区求解方法 空气动力性能
下载PDF
Automated Building Block Extraction and Building Density Classification Using Aerial Imagery and LiDAR Data 被引量:2
4
作者 Emmanuel Bratsolis Eleni Charou +1 位作者 Theocharis Tsenoglou Nikolaos Vassilas 《Journal of Earth Science and Engineering》 2016年第1期1-9,共9页
This paper examines the utility of high-resolution airborne RGB orthophotos and LiDAR data for mapping residential land uses within the spatial limits of suburb of Athens, Greece. Modem remote sensors deliver ample in... This paper examines the utility of high-resolution airborne RGB orthophotos and LiDAR data for mapping residential land uses within the spatial limits of suburb of Athens, Greece. Modem remote sensors deliver ample information from the AOI (area of interest) for the estimation of 2D indicators or with the inclusion of elevation data 3D indicators for the classification of urban land. In this research, two of these indicators, BCR (building coverage ratio) and FAR (floor area ratio) are automatically evaluated. In the pre-processing step, the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an nDSM (normalized digital surface model) comprised of upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Following this step, a MFNN (multilayer feedforward neural network) is used to classify all pixels of the AOI into building or non-building categories. The information derived from the BCR and FAR building indicators, adapted to landscape characteristics of the test area is used to propose two new indices and an automatic post-classification based on the density of buildings. 展开更多
关键词 Urban density LIDAR neural network CLASSIFICATION land management building density post-classification.
下载PDF
Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks 被引量:5
5
作者 Ghiasi Majid Askarnejad Nematollah +1 位作者 Dindarloo Saeid R. Shamsoddini Hamed 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期183-184,共2页
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul... The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively. 展开更多
关键词 Blast boulder Artificial neural networks Multiple regression Golegohar iron ore mine
下载PDF
The Design & Implementation of Multimedia Sensor Node and the Building of Multimedia Network in Smart Home
6
作者 Chao DENG 《International Journal of Technology Management》 2013年第2期8-10,共3页
With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount... With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount of information media such as audio, image and video is becoming a significant characteristics of smart home. The paper focuses on solving the following technical problems: the building of Zigbee multimedia network, the Design and selection of multimedia sensor node. These provide the basic network platform and the core technical support for the building of smart home. 展开更多
关键词 Smart Home Zigbee Network Multimedia Sensor Node Charge Coupled Device SCCB Bus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部