期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
变工况下动态卷积域对抗图神经网络故障诊断
1
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督自适应 动态卷积 对抗 神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
基于空间域图像生成和混合卷积神经网络的配电网故障选线方法 被引量:1
2
作者 郭威 史运涛 《电网技术》 EI CSCD 北大核心 2024年第3期1311-1321,共11页
传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪... 传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪光滑模型对零序电流信号进行降噪处理,减少外界环境的电磁干扰。其次,利用对称希尔伯特变换将一维时域信号转成二维空间域图像,图像的颜色、形状和纹理特征能够充分反映当前系统的运行状态。最后,将一维时域信号和二维空间域图像同步作为混合卷积神经网络的输入,充分挖掘系统的故障特征,利用Sigmoid函数实现故障选线。在辐射状配电网、IEEE-13节点模型、IEEE-34节点、StarSim仿真平台上模型上进行了实验验证。实验结果表明,该选线方法可以有效克服传统方法过度依赖主观特征选择、抗噪性能差等问题,能够在高阻接地、采样时间不同步、两点接地故障等极端情况下可靠地筛选出故障线路。 展开更多
关键词 故障选线 对称希尔伯特变换 混合卷积神经网络 空间图像生成 优化的降噪光滑模型
下载PDF
用于视频压缩感知的特征域优化启发及多假设交叉注意力重构神经网络
3
作者 杨春玲 陈文俊 刘嘉惠 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期9-21,共13页
现有视频压缩感知重建网络通常利用光流网络实现像素域运动估计与运动补偿。然而在重建过程中,光流网络的输入为质量较差的初始估计帧,导致获得的光流不准确,基于光流的像素域对齐与融合操作会造成噪声的累积,导致视频重建帧存在明显的... 现有视频压缩感知重建网络通常利用光流网络实现像素域运动估计与运动补偿。然而在重建过程中,光流网络的输入为质量较差的初始估计帧,导致获得的光流不准确,基于光流的像素域对齐与融合操作会造成噪声的累积,导致视频重建帧存在明显的人工效应,影响重建质量。基于特征域多通道信息对干扰噪声具有较强的鲁棒性,文中将特征域优化思想应用于视频压缩感知重构神经网络的设计中,提出了特征域优化启发及光流引导的多假设交叉注意力重构神经网络(FOFMCNet)。为避免光流中的噪声在图像变形时破坏图像结构的问题,文中在特征域设计了光流指导的多假设运动估计模块与基于交叉注意力的运动补偿模块,以实现特征域的帧间运动估计与运动补偿,从而更为充分地利用帧间相关性辅助非关键帧重构。为了在特征优化过程中加强有效信息的复用,提升网络学习能力并缓解梯度爆炸问题,文中设计了特征域优化启发U型网络(FOUNet),并作为FOFMCNet的子网络,通过多个FOUNet的级联,FOFMCNet在特征域实现非关键帧的优化与重建。实验结果表明,文中所提算法在经典低分辨率数据集(UCF-101和QCIF)和新的高分辨率数据集(REDS4)上的重构结果均优于现有的视频压缩感知算法。 展开更多
关键词 视频压缩感知 特征优化 卷积神经网络 注意力机制 运动估计与补偿
下载PDF
基于迁移卷积神经网络的桥梁结构损伤识别方法
4
作者 罗旭欣 陈龙 +1 位作者 梁韬 黄天立 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3888-3899,共12页
针对实际桥梁结构损伤模式识别时有限元模型与实际结构存在差异的情况,为了提高有限元数值模拟数据集训练的深度神经网络识别实际桥梁结构损伤模式的准确率,提出一种结合迁移学习(Transfer Learning,TL)和一维卷积神经网络(One Dimensio... 针对实际桥梁结构损伤模式识别时有限元模型与实际结构存在差异的情况,为了提高有限元数值模拟数据集训练的深度神经网络识别实际桥梁结构损伤模式的准确率,提出一种结合迁移学习(Transfer Learning,TL)和一维卷积神经网络(One Dimensional Convolutional Neural Network,1D-CNN)的结构损伤识别方法。首先,基于结构有限元数值模拟数据训练1D-CNN模型,选择损伤识别效果较好、性能优良的模型作为源模型;然后,将源模型中的网络结构和超参数迁移到实际结构实测数据集(目标域)网络模型的对应位置并冻结,得到预训练模型;最后,使用实测数据微调预训练模型得到目标模型。为验证该方法的有效性,通过3层钢框架结构实验室试验和日本某简支钢桁梁桥的现场试验,对比源模型(模型Ⅰ)、仅采用实测数据训练得到的CNN模型(模型Ⅱ)和采用迁移学习得到的CNN目标模型(模型Ⅲ)等3种神经网络模型的结构损伤模式识别准确率。研究结果表明:3层钢框架结构实验室试验中,3种CNN模型的最高损伤模式识别准确率分别为63.44%,98.44%,99.06%;日本某简支钢桁梁桥的现场试验中,3种CNN模型的最高损伤模式识别准确率分别为59.50%,97.00%,99.50%。针对不同结构,目标模型(模型Ⅲ)的损伤模式识别准确率均最高,收敛速度最快,优于其他2种CNN模型。基于迁移卷积神经网络的桥梁结构损伤识别方法具有较好的实际结构损伤识别能力,为解决数据有限情况下的结构损伤识别问题提供了一种有效的解决途径。 展开更多
关键词 桥梁结构 损伤模式识别 一维卷积神经网络 迁移学习 目标
下载PDF
用于热成像数据的卷积神经网络特征图筛选方法
5
作者 张雷 沈国琛 欧冬秀 《计算机工程》 CAS CSCD 北大核心 2024年第4期31-40,共10页
红外热成像数据可以有效辅助可见光图像数据,弥补其在天气和光照条件上的不足。现有的研究往往借助域适应将基于可见光图像数据训练得到的卷积神经网络用于处理热成像数据,以弥补热成像数据缺少大量标注训练集的不足,但是这类方法仍无... 红外热成像数据可以有效辅助可见光图像数据,弥补其在天气和光照条件上的不足。现有的研究往往借助域适应将基于可见光图像数据训练得到的卷积神经网络用于处理热成像数据,以弥补热成像数据缺少大量标注训练集的不足,但是这类方法仍无法避免一定程度的训练。而一些研究者发现,图像在频域上呈现域不变成分和随域改变成分的分离现象。受这一现象的启发,提出一种基于离散余弦变换和卡方独立性分数的卷积神经网络特征图筛选方法。利用频域分离域不变成分和随域改变成分,借鉴卡方独立性检验的思想提出基于频段分量的独立性分数,用于度量特征图的差异度,使用聚类将特征图分类,保留主要包含域不变成分的特征图分支,得到适用于热成像数据的网络。实验结果表明,该方法可以充分利用预训练卷积神经网络的潜在预测能力,且不需要重新训练模型。预训练网络无法预测热成像数据,而筛选后的网络前5位预测结果与目标相关的比例最高可达90%。 展开更多
关键词 热成像数据 离散余弦变换 适应 卷积神经网络 交通场景
下载PDF
基于深度卷积神经网络的变换域通信网络抗干扰优化算法 被引量:2
6
作者 孙桂萍 唐艳娜 于爱华 《计算技术与自动化》 2023年第2期119-123,163,共6页
为了有效抑制变换域通信网络干扰信号,改善信噪比,研究了基于深度卷积神经网络的变换域通信网络抗干扰优化算法。应用傅里叶变换方法将信号从时域转换到频域,并以傅里叶变换通信信号获得的参数为依据构建干扰信号模型;嵌入干扰信号模型... 为了有效抑制变换域通信网络干扰信号,改善信噪比,研究了基于深度卷积神经网络的变换域通信网络抗干扰优化算法。应用傅里叶变换方法将信号从时域转换到频域,并以傅里叶变换通信信号获得的参数为依据构建干扰信号模型;嵌入干扰信号模型以形成接收信号,然后对接收信号进行处理并存储在干扰数据库中,利用深度卷积神经网络完成干扰信号的特征学习与干扰估计,并根据干扰估计结果,在接收信号中去除干扰信号,完成变换域通信网络抗干扰优化。实验结果表明:该算法可有效完成变换域通信网络抗干扰优化,优化后通信信号的信噪比改善性能与误码性能均较佳,输出的通信信号几乎无干扰信号存在。 展开更多
关键词 深度卷积神经网络 变换 通信网络 抗干扰优化 傅里叶变换
下载PDF
基于空频联合卷积神经网络的GAN生成人脸检测 被引量:3
7
作者 王金伟 曾可慧 +2 位作者 张家伟 罗向阳 马宾 《计算机科学》 CSCD 北大核心 2023年第6期216-224,共9页
生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网... 生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网络的检测模型。鉴于GAN图像在生成过程中因上采样操作在频谱上留下了清晰可辨的伪影,设计了可学习的频率域滤波核以及频率域网络来充分学习并提取频率域特征。为了减弱图像变换至频域过程中丢弃部分信息而带来的影响,同样设计了空间域网络来学习图像内容本身具有差异化的空间域特征,最终将两种特征融合来实现对GAN生成人脸图像的检测。在多个数据集上的实验结果表明,所提模型在高质量生成数据集上的检测精度及在跨数据集的泛化性上都优于现有算法,且对于JPEG压缩、随机剪裁、高斯模糊等图像变换具有更强的鲁棒性。不仅如此,所提方案在GAN生成的局部人脸数据集上也有不错表现,进一步证明了所提模型有着更好的通用性以及更加广泛的应用前景。 展开更多
关键词 数字图像取证 人脸伪造检测 卷积神经网络 生成式对抗网络 频率
下载PDF
基于混合型复数域卷积神经网络的三维转动舰船目标识别 被引量:9
8
作者 张云 化青龙 +1 位作者 姜义成 徐丹 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1042-1049,共8页
在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type C... 在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type Complex-Valued Convolutional Neural Network,Mix-CV-CNN),并推导Mix-CV-CNN前向传播与反向传播算法.三维转动舰船目标经过SAR成像处理后存在剩余相位信息,Mix-CV-CNN能充分利用SAR复数域图像的幅度和相位信息,在不进行目标重聚焦的情况下,较好完成SAR复杂运动舰船目标的识别.实验表明,Mix-CV-CNN相较于具有相同自由度的实数域卷积神经网络(Real-Valued Convolutional Neural Network,RV-CNN)识别性能有所提高,实测数据识别平均准确率提高3.85%. 展开更多
关键词 合成孔径雷达 复数卷积神经网络 三维转动 目标散焦 舰船目标识别 混合型复数卷积神经网络
下载PDF
基于域适应卷积神经网络的人脸表情识别 被引量:14
9
作者 亢洁 李佳伟 杨思力 《计算机工程》 CAS CSCD 北大核心 2019年第12期201-206,共6页
在利用卷积神经网络进行人脸表情识别时,可借助其他数据集进行辅助训练以应对缺少标记数据的情况,但源域数据库和目标域数据库之间的数据分布差异会影响分类正确率。为此,以AlexNet网络为原型构建基于域适应的卷积神经网络结构。通过引... 在利用卷积神经网络进行人脸表情识别时,可借助其他数据集进行辅助训练以应对缺少标记数据的情况,但源域数据库和目标域数据库之间的数据分布差异会影响分类正确率。为此,以AlexNet网络为原型构建基于域适应的卷积神经网络结构。通过引入包含注意力机制的SE模块进行特征重标定,同时利用域适应方法减小领域差异性。在人脸识别公开数据集上的实验结果表明,与AlexNet和GoingDeep等网络相比,该网络能够以较少的参数量获得较高的识别正确率。 展开更多
关键词 卷积神经网络 人脸表情识别 数据分布 适应 迁移学习
下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:3
10
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
下载PDF
基于域对抗迁移卷积神经网络的小样本GIS绝缘缺陷智能诊断方法 被引量:27
11
作者 王艳新 闫静 +2 位作者 王建华 耿英三 刘志远 《电工技术学报》 EI CSCD 北大核心 2022年第9期2150-2160,共11页
近年来,数据驱动的人工智能模型在气体绝缘组合电器(GIS)绝缘缺陷诊断上取得了一定突破。然而,这些以海量实验数据构建的模型难以部署到现场复杂工况和小样本条件下,导致现有诊断方法现场应用困难。为了解决现场制约传统诊断方法应用的... 近年来,数据驱动的人工智能模型在气体绝缘组合电器(GIS)绝缘缺陷诊断上取得了一定突破。然而,这些以海量实验数据构建的模型难以部署到现场复杂工况和小样本条件下,导致现有诊断方法现场应用困难。为了解决现场制约传统诊断方法应用的数据匮乏难题和现有诊断模型现场应用困难的问题,该文提出了一种新颖的域对抗迁移卷积神经网络用于小样本下的GIS绝缘缺陷智能诊断。首先,以自动寻优构建的卷积神经网络从缺陷样本中学习可迁移绝缘缺陷表征特征,自动寻优构建方法在减少网络构建过程人为干预的同时,有效提升了网络精度等多方面性能。然后,引入域对抗迁移学习,实现海量数据(源域)下训练模型到复杂工况和小样本(目标域)下的迁移,以提升诊断准确率。通过对抗训练方法学习类边界表征特征和域空间表征特征,实现了诊断知识的迁移。在域对抗训练中引入两个领域分类器来进行决策边界域空间的对齐,获得了更合适的特征匹配。在实验室和现场实验验证中,所提方法在目标域下分别达到了99.35%和90.35%的诊断准确率。结果表明,该方法可以有效学习可迁移特征,实现小样本GIS绝缘缺陷的高精度、鲁棒性诊断。 展开更多
关键词 气体绝缘组合电器 对抗迁移学习 卷积神经网络 小样本 智能诊断
下载PDF
基于卷积神经网络联合多域特征提取的干扰识别算法 被引量:15
12
作者 王鹏宇 程郁凡 +1 位作者 徐昊 尚高阳 《信号处理》 CSCD 北大核心 2022年第5期915-925,共11页
干扰识别技术是智能抗干扰通信系统中的关键技术,通过对接收信号中干扰类型的准确判别,可为无线通信系统生成最佳的抗干扰方式提供决策依据。针对无线通信系统中典型压制式干扰的识别问题,本文提出了一种基于卷积神经网络联合多域特征提... 干扰识别技术是智能抗干扰通信系统中的关键技术,通过对接收信号中干扰类型的准确判别,可为无线通信系统生成最佳的抗干扰方式提供决策依据。针对无线通信系统中典型压制式干扰的识别问题,本文提出了一种基于卷积神经网络联合多域特征提取(Convolutional Neural Network-based Joint Multi-Domain Feature Extraction,CNN-JMDFE)的干扰识别算法,通过CNN同时对两种预处理增强的数据对象:时频图像与频域序列提取干扰特征,有效利用了两种数据对象的优势,提升了干扰识别性能。仿真结果表明,在对于包含动态和参数随机的干扰识别场景下,CNN-JMDFE算法在干噪比(Jamming-to-Noise Ratio,JNR)≥-2 dB时可准确识别14种类型的干扰,识别性能明显优于基于时频图像或频域序列单一数据对象的基于卷积神经网络自动特征提取(Automatic Feature Extractionbased Convolutional Neural Network,AFE-CNN)算法;与传统的人工特征提取的深度神经网络(Manual Feature Extraction-based Deep Neural Network,MFE-DNN)相比,本文算法显著提升了在低JNR下分类准确率,增强了干扰特征的抗噪性能;对于复合干扰,本文算法同样可取得良好的分类效果,当JNR≥0 dB时可准确分类10种复合干扰。 展开更多
关键词 卷积神经网络 联合多域特征提取 干扰识别 时频图像 序列
下载PDF
结合多模板的多域卷积神经网络视觉跟踪算法
13
作者 王鹏翔 郭敬滨 +1 位作者 谭文斌 李醒飞 《红外技术》 CSCD 北大核心 2018年第1期47-54,共8页
为了适应视觉跟踪过程中目标外观变化,提高视觉跟踪算法的鲁棒性,本文基于卷积神经网络(Convolutional Neural Network,CNN)并结合多域学习法与多模板管理,提出一种通过树形结构管理多模板的多域卷积神经网络(Multi-Domain CNNs with Mu... 为了适应视觉跟踪过程中目标外观变化,提高视觉跟踪算法的鲁棒性,本文基于卷积神经网络(Convolutional Neural Network,CNN)并结合多域学习法与多模板管理,提出一种通过树形结构管理多模板的多域卷积神经网络(Multi-Domain CNNs with Multiple Models in a tree structure)视觉跟踪算法。首先使用大量已标记目标位置的视频数据预训练多域结构的CNN,使CNN卷积层可从图像中提取出适用于跟踪任务的特征。然后在跟踪时中对CNN全连接层进行微调以适应跟踪目标,并使用树形结构管理存储不同时间段的目标模板得到模板树。使用模板树综合评价待检测帧,估计目标位置。最后按照一定规则将新模板添加进模板树,完成模板的更新。实验表明,该算法对跟踪过程中目标外观的变化有着良好的适应性,同时多模板可抑制CNN在跟踪时产生的模板漂移问题。 展开更多
关键词 视觉跟踪 深度学习 卷积神经网络 多域学习 多模板
下载PDF
基于卷积神经网络的多层域自适应滚动轴承故障诊断 被引量:9
14
作者 杨春柳 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期122-129,共8页
针对基于卷积神经网络(CNN)的域自适应技术在提取可迁移特征的训练过程中,存在内部协变量移位的问题,提出一种多层域自适应滚动轴承故障诊断方法。首先,利用CNN提取原始振动数据的可迁移特征;其次,提出了多层域自适应和权重正则化项约束... 针对基于卷积神经网络(CNN)的域自适应技术在提取可迁移特征的训练过程中,存在内部协变量移位的问题,提出一种多层域自适应滚动轴承故障诊断方法。首先,利用CNN提取原始振动数据的可迁移特征;其次,提出了多层域自适应和权重正则化项约束CNN参数,进一步减少可迁移特征的分布差异,从而解决域移位问题;最后,利用凯斯西储大学的滚动轴承数据集进行实验验证。结果表明,该方法能够有效地减少源域和目标域之间的特征分布差异,提高CNN模型对目标域数据集的诊断性能,相对于最高层域自适应的故障诊断方法,所提方法能在两个数据集之间的迁移故障诊断中得到较高的分类识别结果。 展开更多
关键词 卷积神经网络 协变量移位 可迁移特征 多层自适应 权重正则化
下载PDF
基于自注意力机制的多域卷积神经网络的视觉追踪 被引量:5
15
作者 李生武 张选德 《计算机应用》 CSCD 北大核心 2020年第8期2219-2224,共6页
为了解决多域卷积神经网络(MDNet)在目标快速移动和外观剧烈变化时发生的模型漂移问题,提出了自注意力多域卷积神经网络(SAMDNet),通过引入自注意力机制从通道和空间两个维度来提升追踪网络的性能。首先,利用空间注意力模块将所有位置... 为了解决多域卷积神经网络(MDNet)在目标快速移动和外观剧烈变化时发生的模型漂移问题,提出了自注意力多域卷积神经网络(SAMDNet),通过引入自注意力机制从通道和空间两个维度来提升追踪网络的性能。首先,利用空间注意力模块将所有位置上的特征的加权总和选择性地聚合到特征图中的所有位置上,使得相似的特征彼此相关;然后,利用通道注意力模块整合所有特征图来选择性地强调互相关联的通道的重要性;最后,融合得到最终的特征图。此外,针对MDNet算法因训练数据中存在较多相似但属性不同的序列所造成的网络模型分类不准的问题,构造了复合损失函数。该复合损失函数由分类损失函数和实例判别损失函数组成,首先,用分类损失函数来统计分类的损失值;然后,利用实例判别损失函数来提高目标在当前视频序列中的权重,抑制其在其他序列中的权重;最后,融合两项损失作为模型的最终损失。在目前广泛采用的测试基准数据集OTB50和OTB2015上进行实验,结果表明所提出的算法在成功率指标上相比2015年视觉目标跟踪挑战(VOT2015)的冠军算法MDNet分别提高了1.6个百分点和1.4个百分点,在精确率和成功率指标上优于连续域卷积相关滤波(CCOT)算法,在OTB50上的精确率指标优于高效卷积操作(ECO)算法,验证了该算法的有效性。 展开更多
关键词 多域卷积神经网络 视觉追踪 自注意力机制 实例判别损失 深度学习
下载PDF
深海直达波区卷积神经网络测距方法 被引量:2
16
作者 王文博 苏林 +2 位作者 贾雨晴 任群言 马力 《声学学报》 EI CAS CSCD 北大核心 2021年第6期1081-1092,共12页
深海声场通常可以看作不同掠射角的多途声线在接收器处的叠加,其中经海底反射的声线携带与海底参数有关的声场特征。利用深度卷积神经网络分别学习垂直阵声压域(CNN-Field)和垂直阵波束域(CNN-CBF)特征的方法被用来估计直达波区声源距... 深海声场通常可以看作不同掠射角的多途声线在接收器处的叠加,其中经海底反射的声线携带与海底参数有关的声场特征。利用深度卷积神经网络分别学习垂直阵声压域(CNN-Field)和垂直阵波束域(CNN-CBF)特征的方法被用来估计直达波区声源距离。该方法首先对仿真直达波区声场数据做预处理,然后将声压域和波束域的声场数据分别作为训练集训练深度卷积神经网络模型,最后输入测试集数据到训练完成的模型中估计声源距离.实测环境参数的仿真实验表明CNN-Field方法在不同海底参数的测试集下测距结果差异较大,CNN-CBF方法差异较小,而且在16阵元10 m等间距垂直阵的阵元域信噪比大于0dB时估计准确率可以达到97%.海试数据处理结果表明CNN-CBF方法的直达波区内测距准确率高于CNN-Field,在距离10 km以内的平均准确率可以达到93.16%. 展开更多
关键词 波束 卷积神经网络 掠射角 直达波 平均准确率 测距方法 声线 声场特征
下载PDF
基于多域卷积神经网络跟踪的动态手势识别 被引量:2
17
作者 姬晓飞 张旭 李俊鹏 《沈阳航空航天大学学报》 2021年第5期51-57,共7页
针对传统的手势跟踪方式在复杂环境下跟踪效果差导致动态手势识别准确率不高的问题,提出了一种多域卷积神经网络跟踪框架下的动态手势识别算法。该算法采用多域卷积神经网络实现手势跟踪环节,并根据手势跟踪的特点,精简网络结构,构建全... 针对传统的手势跟踪方式在复杂环境下跟踪效果差导致动态手势识别准确率不高的问题,提出了一种多域卷积神经网络跟踪框架下的动态手势识别算法。该算法采用多域卷积神经网络实现手势跟踪环节,并根据手势跟踪的特点,精简网络结构,构建全域通用fc6层,增强网络对动态手势跟踪的适用性,提升跟踪效果。其次,采用VGG-19对跟踪网络构建的动态手势轨迹特征图谱进行识别。算法将跟踪问题简化成目标与背景的二分类,采用多域卷积神经网络学习跟踪目标共性,能更好地给出跟踪目标模型,且浅层卷积神经网络的利用更能强化空间信息,从而提高动态手势跟踪和识别的效果。通过两组数据库测试表明,对自建的动态手势库识别率高达97.5%,并在Chalearn Gesture Data国际标准手势数据库取得了93.33%的识别率,验证了算法的有效性。 展开更多
关键词 多域卷积神经网络 动态手势识别 深度学习跟踪框架 手势建模 VGG-19
下载PDF
基于卷积神经网络的手势识别算法设计与实现 被引量:3
18
作者 张斌 孙旭飞 吴一鹏 《微型机与应用》 2017年第20期51-53,共3页
为了克服传统手势识别方法复杂的人工提取特征值操作,引入卷积神经网络进行手势识别,该算法可以直接对原始图像进行处理,具有局部感知域、权值共享和池化等特点,可以有效提取图像特征。使用Marcel手势识别数据集对框架进行训练,采用交... 为了克服传统手势识别方法复杂的人工提取特征值操作,引入卷积神经网络进行手势识别,该算法可以直接对原始图像进行处理,具有局部感知域、权值共享和池化等特点,可以有效提取图像特征。使用Marcel手势识别数据集对框架进行训练,采用交叉验证的方法对系统进行评估,实验结果表明该方法可以识别经过训练的手势,且精确度高,鲁棒性强。 展开更多
关键词 卷积神经网络 局部感受 权值共享 池化 手势识别
下载PDF
基于卷积神经网络的EHG胎儿早产识别算法
19
作者 吴沈冠 邓艳军 +2 位作者 张烨菲 邵李焕 赵治栋 《中国医疗器械杂志》 2022年第3期242-247,共6页
胎儿早产是影响婴儿早期发育及生命安全的直接因素之一,其直接的临床表现为孕妇宫缩强度和频率的变化。子宫肌电信号通过在孕妇腹部采集而得,能准确有效地反映出子宫收缩的情况,比子宫宫内压力导管等侵入式监测技术具有更高的临床应用... 胎儿早产是影响婴儿早期发育及生命安全的直接因素之一,其直接的临床表现为孕妇宫缩强度和频率的变化。子宫肌电信号通过在孕妇腹部采集而得,能准确有效地反映出子宫收缩的情况,比子宫宫内压力导管等侵入式监测技术具有更高的临床应用价值。因此,基于EHG的胎儿早产识别算法研究对于围产期的胎儿监护尤为重要。该研究提出了一种基于卷积神经网络架构的EHG胎儿早产识别算法,通过格拉姆角差域法结合迁移学习技术构建一种深度CNN模型。采用临床实测的足月-早产EHG数据库对模型结构进行优化,实现了94.38%的分类准确度和97.11%的F1值。实验结果表明,本研究所构建的模型对临床胎儿早产的预测具有一定的辅助诊断价值。 展开更多
关键词 子宫肌电信号 格拉姆角差 深度卷积神经网络 AlexNet
下载PDF
一种基于整数优化的卷积神经网络训练
20
作者 陈佳伟 《咸阳师范学院学报》 2022年第6期5-7,共3页
卷积神经网络已成功用于视觉分类等各种任务,但卷积神经网络往往需要更大的内存及更多计算资源。文中设计了一种基于整数优化的卷积神经网络训练算法。该算法在网络模型训练的同时,将网络模型量化成整数。这大大降低了模型大小与计算复... 卷积神经网络已成功用于视觉分类等各种任务,但卷积神经网络往往需要更大的内存及更多计算资源。文中设计了一种基于整数优化的卷积神经网络训练算法。该算法在网络模型训练的同时,将网络模型量化成整数。这大大降低了模型大小与计算复杂度,有利于加速卷积神经网络的前向推理过程。在ImageNet数据集上验证了该算法,实验结果表明:该算法在降低模型大小与计算复杂度的同时,保持了与原模型相似的分类精度。 展开更多
关键词 卷积神经网络 整数优化 视觉分类
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部