期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于CBAM-ResNet和多域特征融合的配电网故障选线方法 被引量:4
1
作者 刘会家 肖懂 +1 位作者 滕杰 冯铃 《国外电子测量技术》 北大核心 2023年第8期10-18,共9页
传统配电网故障选线模型大多采用零序电流时频特征作为选线判据,单一信息域特征无法全面反映故障信息差异、适用范围存在局限性。为了提高模型复杂工况下选线准确率,提出一种基于卷积注意力机制优化双分支残差网络(CBAM-ResNet)和多域... 传统配电网故障选线模型大多采用零序电流时频特征作为选线判据,单一信息域特征无法全面反映故障信息差异、适用范围存在局限性。为了提高模型复杂工况下选线准确率,提出一种基于卷积注意力机制优化双分支残差网络(CBAM-ResNet)和多域特征融合的配电网故障选线方法。首先,利用变分模态分解-希尔伯特变换和格拉姆角场将采集的零序电流信号分别映射为二维时频域和空间域图像,构建能够全面的反映故障信息的多域图像训练集;其次,通过CBAM-ResNet网络深层次挖掘并融合多域特征信息,卷积注意力机制能对多域特征的重要性进行区分,加快网络训练速度,提高分类准确性;最后,将融合特征输入全连接层实现对配电网故障线路的选取。仿真结果表明,该方法相比传统选线方法具有更高的选线精度和噪声鲁棒性。 展开更多
关键词 故障选线 多域特征融合 双分支残差网络 卷积注意力机制
下载PDF
基于多域特征融合的旋翼无人机分类识别 被引量:1
2
作者 孙延鹏 李思锐 屈乐乐 《雷达科学与技术》 北大核心 2023年第4期447-453,459,共8页
为提高雷达旋翼无人机的识别效果,本文提出一种基于多域特征融合的旋翼无人机分类方法。首先利用K波段连续波(Continuous Wave,CW)雷达观测多旋翼无人机,对采集到的雷达回波信号进行信号处理依次得到时频图、节奏速度图(Cadence⁃Velocit... 为提高雷达旋翼无人机的识别效果,本文提出一种基于多域特征融合的旋翼无人机分类方法。首先利用K波段连续波(Continuous Wave,CW)雷达观测多旋翼无人机,对采集到的雷达回波信号进行信号处理依次得到时频图、节奏速度图(Cadence⁃Velocity Diagram,CVD)和节奏频谱图(Cadence Frequency Spectrum,CFS),然后将时频图和CVD图分别输入SqueezeNet网络,CFS数据输入一维卷积神经网络(1⁃D⁃CNN)提取回波信号在时频域、节奏速度域和节奏频率域的特征,最后将特征融合输入支持向量机(Support Vector Machine,SVM)进行分类。实测雷达数据处理的结果表明基于多域特征融合的旋翼无人机分类识别方法对三类旋翼无人机的分类准确率达到99.14%。 展开更多
关键词 旋翼无人机分类 多域特征融合 SqueezeNet网络 支持向量机
下载PDF
基于模糊函数多域特征融合与集成学习的雷达辐射源信号识别
3
作者 普运伟 余永鹏 +1 位作者 姜萤 田春瑾 《控制与决策》 EI CSCD 北大核心 2024年第1期39-48,共10页
针对复杂电磁环境下雷达辐射源信号识别方法中存在的抗噪性能差、识别准确率低等问题,提出一种融合模糊函数多域投影特征的集成深度学习识别方法.首先,对信号的模糊函数进行高斯平滑处理,从多域视角出发选取合适角度对模糊函数进行二维... 针对复杂电磁环境下雷达辐射源信号识别方法中存在的抗噪性能差、识别准确率低等问题,提出一种融合模糊函数多域投影特征的集成深度学习识别方法.首先,对信号的模糊函数进行高斯平滑处理,从多域视角出发选取合适角度对模糊函数进行二维投影以构建特征数据集;然后,构建一种基于多域特征融合的两阶段识别分类方法,使用多个密集连接网络DenseNet 121作为初级分类器分别对3类特征数据集进行训练学习,得到初级分类结果;最后,通过Stacking策略对初级分类结果进行融合学习,得到最终类别信息.实验结果表明,所提出方法在信噪比为0 dB时对6类典型雷达信号的整体平均识别率均保持在97.24%以上,即使是在-4 dB环境中,识别率也稳定在87.16%以上,验证了所提出方法的有效性和可行性,具有一定的工程价值. 展开更多
关键词 雷达辐射源信号 模糊函数 信号识别 多域特征融合 集成学习
原文传递
基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究 被引量:5
4
作者 张睿 高美蓉 +3 位作者 傅留虎 张鹏云 白晓露 赵娜 《振动与冲击》 EI CSCD 北大核心 2023年第17期294-305,313,共13页
针对焊缝缺陷检测信号信息丰富度低、深度网络架构人工依赖性强等问题,开展基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究。构建时域数据集并衍生至实数域与复数域中,丰富检测信号的特征表达;设计多域信息融合模型,充分融合特征... 针对焊缝缺陷检测信号信息丰富度低、深度网络架构人工依赖性强等问题,开展基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究。构建时域数据集并衍生至实数域与复数域中,丰富检测信号的特征表达;设计多域信息融合模型,充分融合特征域信息;提出面向卷积神经网络多维超参数自寻优的模型优化策略,提高模型的效率和性能。试验表明,所提方法对五类焊缝缺陷识别准确率为96.54%,能够在提升识别准确率同时保持较少的参数量和计算消耗,具有较强的实用性和泛化性。 展开更多
关键词 焊缝缺陷 超声检测 多域多尺度特征融合 卷积神经网络(CNN)模型优化策略 模型自优化
下载PDF
基于随机共振的航空发动机转子多域融合神经网络故障诊断 被引量:2
5
作者 王立国 谢寿生 +3 位作者 胡金海 翟旭升 余坚 石忠义 《计算机测量与控制》 北大核心 2013年第6期1483-1486,共4页
航空发动机转子早期故障征兆具有强噪声、时变、非线性、多混叠的特点,传统的特征提取方法只针对时域、频域或时频域等单一域的特征,难以全面、准确的代表故障特征;为了提高故障诊断效果,提出基于随机共振的航空发动机转子多域融合神经... 航空发动机转子早期故障征兆具有强噪声、时变、非线性、多混叠的特点,传统的特征提取方法只针对时域、频域或时频域等单一域的特征,难以全面、准确的代表故障特征;为了提高故障诊断效果,提出基于随机共振的航空发动机转子多域融合神经网络故障诊断方法;采用随机共振(SR)理论,提高原始振动信号的信噪比,应用主成分分析法(PCA)构造多征兆域融合特征,并与神经网络相结合,诊断结果与单纯EMD、不加随机共振的融合方法相比,训练时间明显缩短,诊断精确度显著提高,表明该方法能提高故障诊断的准确性、有效性和可靠性。 展开更多
关键词 多域特征融合 神经网络 随机共振(SR) 主成分分析 故障诊断
下载PDF
基于特征融合与DBN的矿用通风机滚动轴承故障诊断 被引量:9
6
作者 郭秀才 吴妮 曹鑫 《工矿自动化》 北大核心 2021年第10期14-20,26,共8页
针对现有矿用通风机滚动轴承故障诊断方法仅提取时频分量特征和采用浅层网络结构,导致故障诊断精度不高的问题,提出了一种基于多域特征融合与深度置信网络(DBN)的矿用通风机滚动轴承故障诊断方法。该方法首先对轴承振动信号进行小波包... 针对现有矿用通风机滚动轴承故障诊断方法仅提取时频分量特征和采用浅层网络结构,导致故障诊断精度不高的问题,提出了一种基于多域特征融合与深度置信网络(DBN)的矿用通风机滚动轴承故障诊断方法。该方法首先对轴承振动信号进行小波包降噪处理,对降噪后的轴承振动信号进行时域特征、频域特征、IMF能量特征提取,得到相对全面的高维特征集;然后通过基于类内、类间标准差的特征筛选方法剔除对分类无效及效果不明显的特征,筛选出高效特征;最后采用核主成分分析(KPCA)对高维筛选特征进行降维融合,消除特征间冗余,将融合特征输入至DBN中完成故障诊断。实验结果表明,相比于基于特征单一和浅层网络的诊断方法,基于多域特征融合与DBN的矿用通风机滚动轴承故障诊断方法平均准确率最高,平均诊断时间最少,对于不同损伤故障数据表现出良好的稳定性和泛化能力。 展开更多
关键词 矿用通风机 滚动轴承故障诊断 多域特征融合 深度学习 特征敏感度 深度置信网络 DBN
下载PDF
基于信息融合与CNN的齿轮箱故障诊断方法 被引量:2
7
作者 赵晓平 魏旭全 +1 位作者 孙中波 王荣发 《测控技术》 2022年第11期11-19,共9页
齿轮箱在实际生产中面临复杂多变的工况,其部件的故障特征随工况发生改变,常规方法在变工况下难以有效识别故障。针对该问题,提出一种基于信息融合和卷积神经网络(IFCNN)的故障诊断方法。IFCNN使用多传感器信息融合和多域特征融合改进... 齿轮箱在实际生产中面临复杂多变的工况,其部件的故障特征随工况发生改变,常规方法在变工况下难以有效识别故障。针对该问题,提出一种基于信息融合和卷积神经网络(IFCNN)的故障诊断方法。IFCNN使用多传感器信息融合和多域特征融合改进卷积神经网络(CNN),首先将不同位置的加速度传感器采集到的振动信号转换成频域、时频域信息,将来自不同传感器的信息融合,然后用CNN对故障信号的频域、时频域信息分别进行特征提取和多域特征融合,结合注意力机制选择重要特征进行故障分类。多组实验结果表明,IFCNN在变工况场景下,可有效提取齿轮箱振动信号的故障特征,12组变工况实验平均识别准确率为98.38%,明显高于所提出的对比方法。 展开更多
关键词 故障诊断 卷积神经网络 多域特征融合 齿轮箱 变工况
下载PDF
一种地震动信号特征提取与分类方法 被引量:1
8
作者 常克武 郭慧杰 葛军 《宇航计测技术》 CSCD 2020年第3期61-64,共4页
为了实时检测、识别和预警对地下基础设施的挖掘破坏活动,本文提出一种地震动信号特征提取与分类方法。通过提取小波包变换域和集合经验模态变换域的多域能量联合分布特征向量,构建改进的径向基神经网络分类模型,利用机器学习的方法提... 为了实时检测、识别和预警对地下基础设施的挖掘破坏活动,本文提出一种地震动信号特征提取与分类方法。通过提取小波包变换域和集合经验模态变换域的多域能量联合分布特征向量,构建改进的径向基神经网络分类模型,利用机器学习的方法提取稳定的信号多域融合特征,并实现准确的信号特征分类预测。由多类别挖掘信号的仿真实验结果可以看出,本文的算法和模型能有效提升地震动信号分类的准确率,对地震动干扰信号具有较强的鲁棒性。 展开更多
关键词 特征分类 径向基神经网络 多域特征融合 地震动信号
下载PDF
基于Transformer-GRU并行网络的滚动轴承剩余寿命预测 被引量:1
9
作者 唐贵基 刘叔杭 +3 位作者 陈锦鹏 徐振丽 田寅初 徐鑫怡 《机床与液压》 北大核心 2024年第19期188-195,共8页
为有效描述滚动轴承性能退化趋势和准确预测其剩余寿命,提出一种基于多域特征融合的Transformer-GRU并行网络的滚动轴承剩余寿命预测方法。建立评价指标对滚动轴承振动信号的时域、频域和时频域等多域特征进行筛选,得到评分高的敏感特征... 为有效描述滚动轴承性能退化趋势和准确预测其剩余寿命,提出一种基于多域特征融合的Transformer-GRU并行网络的滚动轴承剩余寿命预测方法。建立评价指标对滚动轴承振动信号的时域、频域和时频域等多域特征进行筛选,得到评分高的敏感特征,获得退化特征集。利用自编码对退化特征集进行降维,减少数据复杂度和冗余度,得到滚动轴承的退化曲线。最后,利用Transformer-GRU并行网络进行剩余寿命预测,并将该方法运用到公开的轴承数据集分析中。结果表明:Transformer-GRU并行网络不仅可以高效准确地捕捉输入序列中的长期依赖关系,还能更好地处理时间序列之间的特征;该方法可以有效地预测滚动轴承剩余寿命,相比LSTM、GRU等经典方法更具优越性和泛化性。 展开更多
关键词 滚动轴承 剩余寿命预测 多域特征融合 TRANSFORMER GRU
下载PDF
基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法
10
作者 罗国敏 杨雪凤 +3 位作者 尚博阳 罗思敏 和敬涵 王小君 《电力系统保护与控制》 EI CSCD 北大核心 2024年第24期149-160,共12页
针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接... 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10kV配电网仿真模型进行算例分析。结果表明,该方法在-1dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值。 展开更多
关键词 配电网 高阻接地故障 多域特征融合 堆叠降噪自编码器 极限学习机
下载PDF
基于MDFF和DCNN-SVM混合网络的滚动轴承故障诊断研究 被引量:5
11
作者 徐卫晓 井陆阳 +1 位作者 孙显斌 谭继文 《制造技术与机床》 北大核心 2023年第5期13-20,共8页
针对滚动轴承的故障类型比较多,且具有明显的不确定性,采集的单一的信号往往包含各种冗余信息且容易受到噪声信号的干扰,文章提出基于多域特征融合(multi-domain featurefusion,MDFF)和DCNN-SVM的滚动轴承故障诊断研究。通过对多个传感... 针对滚动轴承的故障类型比较多,且具有明显的不确定性,采集的单一的信号往往包含各种冗余信息且容易受到噪声信号的干扰,文章提出基于多域特征融合(multi-domain featurefusion,MDFF)和DCNN-SVM的滚动轴承故障诊断研究。通过对多个传感器采集轴承的振动信号,通过时域、频域和完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)等方法进行特征提取,利用随机森林算法对敏感特征进行筛选,降低特征维度,将优化后的敏感特征值分别输入到DCNN网络中进行自适应特征提取。利用DCNN网络改变各个敏感特征量的权重值,进行综合训练,获得多域融合特征量,输入到支持向量机中进行故障诊断。通过设置多组对比试验可知,提出的方法的识别准确率达到96.82%,比人工-SVM识别准确率提高19.95%,可以有效实现对滚动轴承故障状态的全面诊断,具有一定的应用价值。 展开更多
关键词 多域特征融合 随机森林 深度卷积网络 滚动轴承 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部