A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by tem...A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption.Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method(HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.展开更多
基金Supported by the Korea Ministry of Trade,Industry and Energy,"Energy Technology Development Work in 2017",Project No.20172010105570
文摘A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption.Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method(HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.