Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blu...Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.展开更多
An efficient porous spherical polyethyleneimine-cellulose (PEI-cell) absorbent was synthesized and char- acterized. The main influencing factors and adsorption mechanism for two typical metal ions, Cr3+ and Fe3+, ...An efficient porous spherical polyethyleneimine-cellulose (PEI-cell) absorbent was synthesized and char- acterized. The main influencing factors and adsorption mechanism for two typical metal ions, Cr3+ and Fe3+, were investigated. The adsorption performance primarily depends on the initial concentration of metal ions, pH value and temperature, and the chelation action between N atoms of PEl-cell and metal ions plays an important role. Under dynamic adsorption conditions, the saturation adsorption of polyethyleneimine-cellulose is 83.98 mg.g-1 for Cr(Ⅲ) and 377.19 mg-g-1 for Fe(Ⅲ), higher than report- ed data and that of unmodified cellulose. The adsorption can be well described with second-order kinetic equation and Freundlich adsorption model, and AH, AG and 5 of the adsorption are all negative. With 5% HCI as eluent, the elution ratio of Cr(Ill) and Fe(llI) achieved 99.88% and 97.74% at 313 K, respectively. After the porous PEI-cell was reused 6 times, it still presented satisfactory adsorption performance. Above results show the advantages such as easily-acquired raw material, high efficiency, stable recycling oerformance and biodegradability.展开更多
Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited ...Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited either selective gas adsorption ability for the former or the ability of enan- tioselective separation via reversible single-crystal-to-sin- gle-crystal transformation for the latter.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.21477022)
文摘Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.
基金Supported by the National Natural Science Foundation of China(81373284,81102344)the Project of Education Department in Sichuan(14ZB0267)the Bureau of Science and Technology of Mianyang City of China(10Y003-8)
文摘An efficient porous spherical polyethyleneimine-cellulose (PEI-cell) absorbent was synthesized and char- acterized. The main influencing factors and adsorption mechanism for two typical metal ions, Cr3+ and Fe3+, were investigated. The adsorption performance primarily depends on the initial concentration of metal ions, pH value and temperature, and the chelation action between N atoms of PEl-cell and metal ions plays an important role. Under dynamic adsorption conditions, the saturation adsorption of polyethyleneimine-cellulose is 83.98 mg.g-1 for Cr(Ⅲ) and 377.19 mg-g-1 for Fe(Ⅲ), higher than report- ed data and that of unmodified cellulose. The adsorption can be well described with second-order kinetic equation and Freundlich adsorption model, and AH, AG and 5 of the adsorption are all negative. With 5% HCI as eluent, the elution ratio of Cr(Ill) and Fe(llI) achieved 99.88% and 97.74% at 313 K, respectively. After the porous PEI-cell was reused 6 times, it still presented satisfactory adsorption performance. Above results show the advantages such as easily-acquired raw material, high efficiency, stable recycling oerformance and biodegradability.
基金supported by the National Natural Science Foundation of China(91122032,21121061,90922009,and 50872157)the National Basic Research Program of China(2012CB821704)
文摘Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited either selective gas adsorption ability for the former or the ability of enan- tioselective separation via reversible single-crystal-to-sin- gle-crystal transformation for the latter.