Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was syn...Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.展开更多
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this pape...In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.展开更多
基金Project(51674301) supported by the National Natural Science Foundation of China
文摘Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.
基金Project supported by the National Natural Science Foundation of China(No.51775506)the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050022)+2 种基金the Public Welfare Technology Application Research Project of Zhejiang Province(Nos.LGG19E050022 and 2017C33115)the Zhejiang Provincial Science&Technology Project for Medicine&Health(No.2018KY878)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering of Hangzhou Dianzi University,China
文摘In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.