Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly poro...Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.展开更多
Porous Si3N4 self-reinforce ceramics were prepared by gelcasting using agarose solutions. By changing the agarose content in the slurries, the porous silicon nitride ceramics with different porosities, α→β-Si3N4 ph...Porous Si3N4 self-reinforce ceramics were prepared by gelcasting using agarose solutions. By changing the agarose content in the slurries, the porous silicon nitride ceramics with different porosities, α→β-Si3N4 phase transformation, and mechanical properties were obtained. When the agarose content changed from 0.2% to 0.8% (w/w, based on powder), the porosities increased from 10.3% to 21.4%, while the fracture strength decreased from 455 to 316 MPa and the fracture toughness decreased from 6.6 to 5.5 MPa·m1/2. Many fibrous β-Si3N4 grains grown from the internal wall of the round pores is the typical microstructure of the gelcasting porous silicon nitride ceramic. Both elongated β-Si3N4 grains and suitable interfacial bonding strength contributes to high fracture toughness by favoring crack deflection and bridging. The growth mechanisms of fibrous grains resulted from the synergy of solution-diffusion-reprecipitation and vapor-liquid-solid (VLS).展开更多
基金supported by the National Natural Science Foundation of China(51568049,51208248,51468043,21366024)the National Science Fund for Excellent Young Scholars(51422807)+1 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20114BAB213015)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515,GJJ12456)~~
文摘Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.
基金Project supported by the National Natural Science Foundation of China (No 90716022)the Science Fund for Distinguished Young Scholars of Heilongjiang Province (No JC200603),China
文摘Porous Si3N4 self-reinforce ceramics were prepared by gelcasting using agarose solutions. By changing the agarose content in the slurries, the porous silicon nitride ceramics with different porosities, α→β-Si3N4 phase transformation, and mechanical properties were obtained. When the agarose content changed from 0.2% to 0.8% (w/w, based on powder), the porosities increased from 10.3% to 21.4%, while the fracture strength decreased from 455 to 316 MPa and the fracture toughness decreased from 6.6 to 5.5 MPa·m1/2. Many fibrous β-Si3N4 grains grown from the internal wall of the round pores is the typical microstructure of the gelcasting porous silicon nitride ceramic. Both elongated β-Si3N4 grains and suitable interfacial bonding strength contributes to high fracture toughness by favoring crack deflection and bridging. The growth mechanisms of fibrous grains resulted from the synergy of solution-diffusion-reprecipitation and vapor-liquid-solid (VLS).