Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple proc...Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were in- vestigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(III) onto CS/Fe3OdFe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3OJFe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g 1, which is higher than that of CS/Fe304/Fe(OH)3 prepared by the conventional method (4.72 mg g-l). The results showed that the microspheres had a high adsorption capacity for As(III) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.展开更多
基金supported by the research grants from the National 973 Project (S2009061009)the National Natural Science Foundation of China(50973038)
文摘Porous chitosan(CS)/magnetic(Fe304)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(Ill) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were in- vestigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(III) onto CS/Fe3OdFe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3OJFe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g 1, which is higher than that of CS/Fe304/Fe(OH)3 prepared by the conventional method (4.72 mg g-l). The results showed that the microspheres had a high adsorption capacity for As(III) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.