With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges wit...With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.展开更多
Graphene sponge(GS) is a porous 3D structure of graphene. Although hydrothermal reduction, chemical vapor deposition, solution reduction and high temperature annealing could be used for the preparation of GS, the size...Graphene sponge(GS) is a porous 3D structure of graphene. Although hydrothermal reduction, chemical vapor deposition, solution reduction and high temperature annealing could be used for the preparation of GS, the size and shape cannot be well controlled. Herein, we reported a facile method to prepare GS under mild condition in a size and shape controllable way. Graphene oxide was lyophilized to form the spongy structure and reduced by steamy hydrazine hydrate to produce GS. The size and shape of GS prepared were nearly identical to that of the container. The reduction degree of GS could be regulated by the reduction temperature and time.展开更多
基金This work is supported by Beijing Natural Science Foundation (No. 2122027), the National Basic Research Program of China (No. 2011CB013000), the National Natural Science Foundation of China (No. 51372133), and the Tsinghua University Initiative Scientific Research Program (No. 2012Z02102).
文摘With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.
基金financial support from the China Natural Science Foundation (No. 201307101)the Science and Technology Department of Sichuan Province (No. 20134FZ0060)+2 种基金Top-notch Young Talents Program of Chinathe Project of Postgraduate Degree ConstructionSouthwest University for Nationalities (No. 2015XWD-S0703)
文摘Graphene sponge(GS) is a porous 3D structure of graphene. Although hydrothermal reduction, chemical vapor deposition, solution reduction and high temperature annealing could be used for the preparation of GS, the size and shape cannot be well controlled. Herein, we reported a facile method to prepare GS under mild condition in a size and shape controllable way. Graphene oxide was lyophilized to form the spongy structure and reduced by steamy hydrazine hydrate to produce GS. The size and shape of GS prepared were nearly identical to that of the container. The reduction degree of GS could be regulated by the reduction temperature and time.