Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly poro...Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.展开更多
We reported the fabrication of highly porous graphene/TiO2 composite nanofibers in the form of a nonwoven mat by electrospinning followed by calcination in air at 450°C.The graphene can uniformly disperse in high...We reported the fabrication of highly porous graphene/TiO2 composite nanofibers in the form of a nonwoven mat by electrospinning followed by calcination in air at 450°C.The graphene can uniformly disperse in highly porous TiO2 nanofibers.The highly porous graphene/TiO2 composite nanofibers exhibited excellent catalytic activities.The new method for producing graphene/TiO2 composite nanofibers is versatile and can be extended to fabricate various types of metal oxide and graphene nanocomposites.展开更多
Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic mater...Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.展开更多
基金supported by the National Natural Science Foundation of China(51568049,51208248,51468043,21366024)the National Science Fund for Excellent Young Scholars(51422807)+1 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20114BAB213015)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515,GJJ12456)~~
文摘Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.
基金Project(41271332)supported by the National Natural Science Foundation of China
文摘We reported the fabrication of highly porous graphene/TiO2 composite nanofibers in the form of a nonwoven mat by electrospinning followed by calcination in air at 450°C.The graphene can uniformly disperse in highly porous TiO2 nanofibers.The highly porous graphene/TiO2 composite nanofibers exhibited excellent catalytic activities.The new method for producing graphene/TiO2 composite nanofibers is versatile and can be extended to fabricate various types of metal oxide and graphene nanocomposites.
基金the National Natural Science Foundation of China(51701146,51672204)the Fundamental Research Funds for the Central Universities(WUT:2017IB015)Foundation of National Key Laboratory on Electromagnetic Environment Effects(614220504030617)。
文摘Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.