A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) w...A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.展开更多
基金the National Natural Science Foundation of China(Grant No.50578049)
文摘A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.