利用乳液法制备出MnOx纳米颗粒,将其负载于微孔管式钛膜制得MnOx负载钛基电催化膜(MnOx/Ti).运用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、循环伏安法(CV)和计时电流法(CA)等表征方法系统考察了不同焙烧温度下MnOx...利用乳液法制备出MnOx纳米颗粒,将其负载于微孔管式钛膜制得MnOx负载钛基电催化膜(MnOx/Ti).运用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、循环伏安法(CV)和计时电流法(CA)等表征方法系统考察了不同焙烧温度下MnOx晶型结构、MnOx/Ti催化膜电化学性能以及催化氧化苯甲醇的变化规律.结果表明:随着焙烧温度的升高,MnOx的晶型由初始的Birnessite-MnO2逐渐转变为K0.27MnO2,再由Mn3O4最终转变为α-MnO2.所得MnOx/Ti膜中,α-Mn O2晶粒尺寸小于30 nm,结晶度较高,颗粒分布均匀.同时,由于其含有不饱和配位的锰原子和氧空位以及与基体Ti之间存在键合作用,表现出优异的电化学性能和催化性能.以450°C焙烧所得的α-MnO2/Ti为阳极构建电催化膜反应器催化氧化苯甲醇.在反应温度为25°C,50mmol L–1苯甲醇水溶液,电流密度为2 m A cm–2,停留时间为15 min的条件下,膜反应器苯甲醇转化率达64%,苯甲醛选择性为79%.展开更多
The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morph...The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.展开更多
Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen se...Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen sensing TiO2 films were obtained by the addition of polyethylene glycol (PEG). The micrographs of scanning electron microscope (SEM) show that the pores of the sample about 400-600 nm in size with PEG(2 000 g/mol) are larger than those about 300 nm in size with PEG( 1 000 g/mol), while the density of pores is lower. The results also indicate that increasing the content of PEG properly is beneficial to the formation of porous structure. With the increasing content of PEG from 0 g to 2.5 g, the oxygen sensitivity increases from 330 to more than 1 000 at 800 ℃, from 170 to more than 1 000 at 900℃, and the response time to O2 and H2 are about 1.5 s and less than 1s, respectively.展开更多
文摘利用乳液法制备出MnOx纳米颗粒,将其负载于微孔管式钛膜制得MnOx负载钛基电催化膜(MnOx/Ti).运用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、循环伏安法(CV)和计时电流法(CA)等表征方法系统考察了不同焙烧温度下MnOx晶型结构、MnOx/Ti催化膜电化学性能以及催化氧化苯甲醇的变化规律.结果表明:随着焙烧温度的升高,MnOx的晶型由初始的Birnessite-MnO2逐渐转变为K0.27MnO2,再由Mn3O4最终转变为α-MnO2.所得MnOx/Ti膜中,α-Mn O2晶粒尺寸小于30 nm,结晶度较高,颗粒分布均匀.同时,由于其含有不饱和配位的锰原子和氧空位以及与基体Ti之间存在键合作用,表现出优异的电化学性能和催化性能.以450°C焙烧所得的α-MnO2/Ti为阳极构建电催化膜反应器催化氧化苯甲醇.在反应温度为25°C,50mmol L–1苯甲醇水溶液,电流密度为2 m A cm–2,停留时间为15 min的条件下,膜反应器苯甲醇转化率达64%,苯甲醛选择性为79%.
基金Projects(21171027,50872014) supported by the National Natural Science Foundation of ChinaProject(K1001020-11)supported by the Science and Technology Key Project of Changsha City,China
文摘The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.
基金National Natural Science Foundation of China (No 59995520)
文摘Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen sensing TiO2 films were obtained by the addition of polyethylene glycol (PEG). The micrographs of scanning electron microscope (SEM) show that the pores of the sample about 400-600 nm in size with PEG(2 000 g/mol) are larger than those about 300 nm in size with PEG( 1 000 g/mol), while the density of pores is lower. The results also indicate that increasing the content of PEG properly is beneficial to the formation of porous structure. With the increasing content of PEG from 0 g to 2.5 g, the oxygen sensitivity increases from 330 to more than 1 000 at 800 ℃, from 170 to more than 1 000 at 900℃, and the response time to O2 and H2 are about 1.5 s and less than 1s, respectively.