用氢气泡动态模板法在铜基底上沉积锡制备了一种新型锡电极。采用SEM、EDS和XRD对多孔锡沉积层进行表征,并对其催化CO_2电化学还原制甲酸的性能进行了研究。SEM结果表明多孔锡沉积层具有自组织的蜂窝状三维多孔结构,同时EDS分析表明电...用氢气泡动态模板法在铜基底上沉积锡制备了一种新型锡电极。采用SEM、EDS和XRD对多孔锡沉积层进行表征,并对其催化CO_2电化学还原制甲酸的性能进行了研究。SEM结果表明多孔锡沉积层具有自组织的蜂窝状三维多孔结构,同时EDS分析表明电极表面无杂质。XRD表征表明在基底和Sn沉积层交界处有Cu_5Sn_6合金生成,加强了两者之间的连接。采用不同扫描速率下循环伏安曲线法测试电化学表面积,多孔锡电极的电化学表面积大约是普通锡片电极的6倍。电极的循环伏安测试结果表明,多孔锡电极比普通锡片电极具有更高的电流密度,更正的起峰电位,说明具有多孔结构的电极对CO_2电化学还原反应具有更高的活性。通过考察KHCO_3浓度、还原电位对还原过程的影响,确定KHCO_3浓度为0.5 mol/L,还原电位为-1.7 V vs.SCE时,甲酸的电流效率可达73.9%。由此可见,多孔结构电极材料能有效地提高CO_2电还原的催化效果。展开更多
The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydrox...The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nano- porous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-di- mensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3,380 F g-1 at a current density of 2 A g-1. Even when the current density was increased to 50 A g-1, it still retained a high capacitance of 1,927 F g-1. The promising performance of the Ni(OH)2@NPG/Ni foam elec- trode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This in- spiring electrochemical performance would make the as-de- signed electrode material become one of the most promising candidates for future electrochemical energy storage systems.展开更多
文摘用氢气泡动态模板法在铜基底上沉积锡制备了一种新型锡电极。采用SEM、EDS和XRD对多孔锡沉积层进行表征,并对其催化CO_2电化学还原制甲酸的性能进行了研究。SEM结果表明多孔锡沉积层具有自组织的蜂窝状三维多孔结构,同时EDS分析表明电极表面无杂质。XRD表征表明在基底和Sn沉积层交界处有Cu_5Sn_6合金生成,加强了两者之间的连接。采用不同扫描速率下循环伏安曲线法测试电化学表面积,多孔锡电极的电化学表面积大约是普通锡片电极的6倍。电极的循环伏安测试结果表明,多孔锡电极比普通锡片电极具有更高的电流密度,更正的起峰电位,说明具有多孔结构的电极对CO_2电化学还原反应具有更高的活性。通过考察KHCO_3浓度、还原电位对还原过程的影响,确定KHCO_3浓度为0.5 mol/L,还原电位为-1.7 V vs.SCE时,甲酸的电流效率可达73.9%。由此可见,多孔结构电极材料能有效地提高CO_2电还原的催化效果。
基金financially supported by the National Natural Science Foundation of China (21673051,51604086)the Guangdong Science and Technology Department (2016A010104015)+4 种基金the Pearl River Scholar Funded Scheme of Guangdong Province Universities and Colleges (2015)the Science and Technology Program of Guangzhou (201604030037)the 'One-hundred Talents plan' (220418056)the 'One-hundred Young Talents plan' (220413126)the Youth Foundation (252151038) of Guangdong University of Technology
文摘The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nano- porous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-di- mensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3,380 F g-1 at a current density of 2 A g-1. Even when the current density was increased to 50 A g-1, it still retained a high capacitance of 1,927 F g-1. The promising performance of the Ni(OH)2@NPG/Ni foam elec- trode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This in- spiring electrochemical performance would make the as-de- signed electrode material become one of the most promising candidates for future electrochemical energy storage systems.