期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
热环境下弹性地基上多孔FGM圆板的自由振动特性
1
作者 滕兆春 王伟斌 薛刚 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第10期193-202,共10页
基于一阶剪切变形理论,研究了热环境下弹性地基上多孔功能梯度材料(Functionally Graded Materials,FGM)圆板的自由振动特性.首先,考虑含孔隙的Voigt修正混合幂律模型,并给出统一温度场描述材料受温度依赖,利用Hamilton原理,推导热环境... 基于一阶剪切变形理论,研究了热环境下弹性地基上多孔功能梯度材料(Functionally Graded Materials,FGM)圆板的自由振动特性.首先,考虑含孔隙的Voigt修正混合幂律模型,并给出统一温度场描述材料受温度依赖,利用Hamilton原理,推导热环境下弹性地基上多孔FGM圆板自由振动的控制微分方程并进行无量纲化;然后,应用微分变换法对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界温升值的代数特征方程.将问题退化后并与已有文献结果进行对比以验证其有效性;最后,计算并分析了梯度指数、孔隙率、边界条件、厚度与半径比、温升值和Winkler弹性刚度系数对多孔FGM圆板无量纲固有频率的影响以及各相关参数对临界温升值的影响.结果表明,梯度指数影响频率,反映材料从陶瓷向金属过渡的特点,孔隙率削弱刚度进而影响固有频率大小,Winkler地基对刚度有着增强的作用,温度增大使结构发生热屈曲而失稳等. 展开更多
关键词 多孔fgm圆板 弹性地基 固有频率 临界温升 微分变换法(DTM)
下载PDF
温度影响下Winkler-Pasternak弹性地基上多孔FGM矩形板的自由振动分析 被引量:6
2
作者 滕兆春 王伟斌 郑文达 《工程力学》 EI CSCD 北大核心 2022年第4期246-256,共11页
基于经典薄板理论和Hamilton原理研究温度影响下Winkler-Pasternak弹性地基上多孔功能梯度材料(FGM)矩形板的自由振动特性。采用Voigt混合幂率模型和孔隙任意分布模型来表征多孔FGM矩形板的材料属性,并考虑多孔FGM矩形板内部均匀温升和... 基于经典薄板理论和Hamilton原理研究温度影响下Winkler-Pasternak弹性地基上多孔功能梯度材料(FGM)矩形板的自由振动特性。采用Voigt混合幂率模型和孔隙任意分布模型来表征多孔FGM矩形板的材料属性,并考虑多孔FGM矩形板内部均匀温升和材料具有温度依赖特性;应用物理中面推导弹性地基上多孔FGM矩形板自由振动的控制微分方程并进行无量纲化;采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,引入典型的六种边界在MATLAB统一编程且保证计算精度一致,经过迭代收敛,求解出无量纲固有频率;通过算例研究了边界条件、梯度指数、升温、孔隙率、长宽比、边厚比、无量纲弹性刚度系数和无量纲剪切刚度系数对多孔FGM矩形板振动特性的影响。 展开更多
关键词 多孔fgm矩形板 Winkler-Pasternak弹性地基 温度 自由振动 固有频率 微分变换法
下载PDF
多孔FGM矩形板的自由振动与临界屈曲载荷分析 被引量:2
3
作者 滕兆春 席鹏飞 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第2期317-325,共9页
功能梯度材料(FGM)的特性与孔隙量有密切的关系,孔隙率会影响FGM的弹性模量、泊松比和密度等。依据经典薄板理论和Hamilton原理建立了四边受压多孔FGM矩形板自由振动和屈曲的数学模型并对控制方程进行无量纲化。运用微分变换法(DTM)对... 功能梯度材料(FGM)的特性与孔隙量有密切的关系,孔隙率会影响FGM的弹性模量、泊松比和密度等。依据经典薄板理论和Hamilton原理建立了四边受压多孔FGM矩形板自由振动和屈曲的数学模型并对控制方程进行无量纲化。运用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,经过迭代求解,得到多孔FGM矩形板的无量纲固有频率和无量纲临界屈曲载荷。将该问题退化为孔隙率为零时FGM矩形板的自由振动并与其精确解进行对比,发现DTM计算精度较高,这验证了该方法在求解四边受压多孔FGM矩形板自由振动和屈曲问题的有效性。计算结果表明,多孔FGM矩形板的弹性模量随梯度指数与孔隙率的增大而减小。进一步分析了在不同边界条件下长宽比不变时梯度指数、孔隙率对无量纲的固有频率和临界屈曲载荷的影响,以及不同边界条件下长宽比、载荷对无量纲固有频率的影响。 展开更多
关键词 多孔fgm 矩形板 孔隙率 自由振动 屈曲 微分变换法
下载PDF
基于二元耦联性解耦下多孔FGM梁的热-力耦合振动与屈曲特性 被引量:8
4
作者 蒲育 周凤玺 +1 位作者 任永忠 刘君 《工程力学》 EI CSCD 北大核心 2020年第8期10-19,共10页
采用一种改进型广义微分求积(MGDQ)法,数值研究了初始轴向机械力作用下含均匀孔隙的功能梯度材料(FGM)梁在热环境中的耦合振动及耦合屈曲特性。考虑了材料性质随温度的相关性,温度沿梁的厚度方向按不同类型稳态分布,采用含孔隙率修正的V... 采用一种改进型广义微分求积(MGDQ)法,数值研究了初始轴向机械力作用下含均匀孔隙的功能梯度材料(FGM)梁在热环境中的耦合振动及耦合屈曲特性。考虑了材料性质随温度的相关性,温度沿梁的厚度方向按不同类型稳态分布,采用含孔隙率修正的Voigt混合幂率模型来表征多孔FGM梁的材料属性。采用一种n阶广义梁理论(GBT),在Hamilton体系下统一建立描述该系统耦合振动及屈曲问题力学模型的控制方程。通过引入边界控制参数,可实施3种典型边界梁动态响应MGDQ法求解的MATLAB统一化编程。基于两种静动态力学行为之间的二元耦联性,编写循环子程序用来获得屈曲静态响应,该分析方法极大地简化了解耦过程并提高了计算效率。通过算例主要探究了梁理论、边界条件、温度分布、升温、初始轴向机械力、热-力耦合效应、孔隙率、梯度指标、跨厚比等诸多参数对多孔FGM梁振动及屈曲特性的影响,同时刻画并揭示了两种静动态力学行为之间的二元耦联性。 展开更多
关键词 多孔fgm n阶广义梁理论 热-力耦合载荷 耦合振动 耦合屈曲 改进型广义微分求积法
下载PDF
弹性地基上多孔功能梯度材料矩形板的自由振动与临界屈曲载荷分析 被引量:1
5
作者 滕兆春 席鹏飞 《计算力学学报》 CAS CSCD 北大核心 2022年第5期582-590,共9页
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理... 多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。 展开更多
关键词 多孔fgm矩形板 Winkler弹性地基 孔隙率 固有频率 临界屈曲载荷 微分变换法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部