A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of ...A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of the multiwavelet domain and these subblocks have many similarities. Watermark bits are added to low- frequency coefficients. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results demonstrate that the new algorithm is robust against a variety of attacks, especially, the watermark extraction does not require the original image.展开更多
A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by ad...A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.展开更多
基金The National Natural Science Foundation of China(No60473015)
文摘A novel blind digital watermarking algorithm based on neural networks and multiwavelet transform is presented. The host image is decomposed through multiwavelet transform. There are four subblocks in the LL- level of the multiwavelet domain and these subblocks have many similarities. Watermark bits are added to low- frequency coefficients. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results demonstrate that the new algorithm is robust against a variety of attacks, especially, the watermark extraction does not require the original image.
文摘A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.