The shallow lake wetlands in the middle and lower Yangtze River floodplain are important wintering and stopover habitats for migratory waterbirds on the East Asia-Australia Flyway.With increasing fishery practices in ...The shallow lake wetlands in the middle and lower Yangtze River floodplain are important wintering and stopover habitats for migratory waterbirds on the East Asia-Australia Flyway.With increasing fishery practices in recent years,however,the wetlands have deteriorated significantly and now threaten wintering waterbirds.To gain insight into the influence of deteriorating wetlands on waterbirds,we conducted a survey of wintering waterbird species,population size,and distribution across 11 belt transects in Caizi Lake and Shengjin Lake,two shallow lakes along the Yangtze River in Anhui Province from November 2007-April 2008 and from November 2008-April 2009,respectively.The impacts of different fishery patterns on the distribution of waterbirds were also analyzed.A total of 43 waterbirds species belong to 7 orders of 12 families were counted during the surveys,of which 38 were found in Caizi Lake with a density of 8.2 ind./hm2,and 42 in Shengjin Lake with a density of 3.5 ind./hm2.Geese(Anser cygnoides),bean geese(Anser fabalis),tundra swan(Cygnus columbianus),and dunlin(Calidris alpina) were the dominant species in the two shallow lakes.Species number and individual assemble reached maximum at the end of December and in early January of the following year,without coincidence of the largest flock for different ecological groups.Based on waterbird diversity across the 11 belt transects and the fishery patterns,habitats could be divided into three groups.Gruiformes,Anseriformes and Charadriiformes had relatively higher densities in the natural fishery zones and lower densities in the cage fishery zones;whereas,the density of Ardeidae showed little change across all lake zones.It is important to develop sustainable fishery patterns in shallow lakes along the middle and lower Yangtze River floodplain to better protect resources of wintering waterbirds.展开更多
[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classificat...[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.展开更多
[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1...[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.展开更多
The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an ...The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an important step in developing climate system models.Compared with observations and previous versions(CICE4.0 and CICE5.0),the advantages of CICE6.0(the latest version)are analyzed in this paper.It is found that CICE6.0 has the minimum interannual errors,and the seasonal cycle it simulates is the most consistent with observations.CICE4.0 overestimates winter sea-ice and underestimates summer sea-ice severely.Meanwhile,the errors of CICE5.0 in winter are larger than for the other versions.The main attention is paid to the perennial ice and the seasonal ice.The spatial distribution of root-mean-square errors indicates that the simulated errors are distributed in the Atlantic sector and the outer Arctic.Both CICE4.0 and CICE5.0 underestimate the concentration of the perennial ice and overestimate that of the seasonal ice in these areas.Meanwhile,CICE6.0 solves this problem commendably.Moreover,the decadal trends it simulates are comparatively the best,especially in the central Arctic sea.The other versions underestimate the decadal trend of the perennial ice and overestimate that of the seasonal ice.In addition,an index used to objectively describe the difference in the spatial distribution between the simulation and observation shows that CICE6.0 produces the best simulated spatial distribution.展开更多
Changes in the lake areas of Xainza basin in the past 33 years (1976 to 2008) were studied using Landsat data from Multispectral Scanners (1973- 1977), Thematic Mapper (1989-1992, 2007-2009), and Enhanced Themat...Changes in the lake areas of Xainza basin in the past 33 years (1976 to 2008) were studied using Landsat data from Multispectral Scanners (1973- 1977), Thematic Mapper (1989-1992, 2007-2009), and Enhanced Thematic Mapper Plus (1999-2002). The results indicated that lakes in the study area evidently expanded from 1976 to 2008, with total expansion of 1512.64km2. The mean annual air temperature presented an upward trend with certain fluctuations from 1966 to 2008. The air temperature rise rates in the cold season (o.31~C/loa) were higher than those in the hot season (0.24℃/1oa), in the Xainza station example. Precipitation exhibited evident seasonal differences. Mean annual precipitation in hot season is 281.48 mm and cold season is 32.66 mm from 1966 to 2008 in study area. Precipitation in the hot season was the major contributor to the increase in annual precipitation. Grey relational analysis (GRA) was used to study the response of lake areas to climatic factors. The mean air temperature and precipitation were selected as comoared series, and the lake areas were regarded as the reference series. The grey relational grade (GRG) between compared series and reference series were calculated through GRA. The results indicated that changes in lake areas were mainly affected by climatic factors in the hot season. Lakes in this region were classified into three grades, namely, Grades I, II, and III according to the recharge source and elevation. The GRGs of each series varied for different grade lakes: the area of Grade III lakes were the most relevant to the hot season factors, the GRGs of precipitation and air temperature were 0.7570 and 0.6606; followed by the Grade II lakes; Grade I lakes were more sensitive to the air temperature.展开更多
Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and...Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and the relationships among 11 diversity indices were explored.Generalized additive models were constructed to examine the environmental effects on diversity indices.Eleven diversity indices were grouped into four components:(1) species numbers and richness,(2) heterogeneous indices,(3) evenness,and(4) taxonomic relatedness.The results show that diversity indices among different components are complementary.Spatial patterns show that fish diversity was higher in coastal areas,which was affected by complex bottom topography and spatial variations of water mass and currents.Seasonal trends could be best explained by the seasonal migration of dominant fish species.Fish diversity generally declined with increasing depth except for taxonomic distinctness,which increased with latitude.In addition,bottom temperature had a significant effect on diversity index of richness.These results indicate that substrate complexity and environmental gradients had important influences on fish diversity patterns,and these factors should be considered in fishery resource management and conservation.Furthermore,diversity in two functional groups(demersal/pelagic fishes) was influenced by different environmental factors.Therefore,the distribution of individual species or new indicators in diversity should be applied to examine spatio-seasonal variations in fish diversity.展开更多
The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasona...The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.展开更多
Soil fauna have been receiving more and more attention because they play an important role in nutrient cycling.However,there is a lack of information on soil arthropods in the forest-steppe ecotone in the mountainous ...Soil fauna have been receiving more and more attention because they play an important role in nutrient cycling.However,there is a lack of information on soil arthropods in the forest-steppe ecotone in the mountainous region of northern Hebei,which makes it difficult to meet the need of protecting biodiversity in this area.Soil arthropod communities were investigated in the forest-steppe ecotone in northern Hebei province to provide basic information on changes in mountain soil fertility,which could promote the development of soil arthropod communities in mountain ecotones.From the preliminary identification,a total of 7994 individual soil arthropods were collected,which belonged to 25 groups,6 classes and 24 orders.Acarina,Hymenoptera and Collembola were the dominant groups in the ecotone.The number of Acarina was higher than Collembola,and this phenomenon was obviously different from other areas in the same climate zone.The increased abundance of rare groups in the Forest zone with the richer vegetation,higher arthropod abundance and more substantial litter depth,could be interpreted as a reaction to the suitable soil environment and food supply.And these rare groups were sensitive to environmental changes,which could be regarded as biotic indicators for evaluating soil quality.The analysis of community diversity showed that the abundance index (d),the Shannon-Wiener index (H'),the evenness index (J) and the density-group index (DG) were significantly higher in the forest zone,lower in the forest-steppe zone,and lowest in the meadow-steppe zone.Seasonal variations in community composition correlated with changes in average air temperature and precipitation in this ecotone.Groups and individuals of soil arthropod communities in the three zones were present in greater numbers in the middle of the rainy season than in the early or late periods of the rainy season as a whole.At the same time,seasonal changes in soil arthropod communities from different plots were also influenced by habitat condition.展开更多
基金Supported partly by the National Natural Science Foundation of China(30870317)EU-China Biodiversity Programme(00056783)Anhui Academic and Technical Leader Fund
文摘The shallow lake wetlands in the middle and lower Yangtze River floodplain are important wintering and stopover habitats for migratory waterbirds on the East Asia-Australia Flyway.With increasing fishery practices in recent years,however,the wetlands have deteriorated significantly and now threaten wintering waterbirds.To gain insight into the influence of deteriorating wetlands on waterbirds,we conducted a survey of wintering waterbird species,population size,and distribution across 11 belt transects in Caizi Lake and Shengjin Lake,two shallow lakes along the Yangtze River in Anhui Province from November 2007-April 2008 and from November 2008-April 2009,respectively.The impacts of different fishery patterns on the distribution of waterbirds were also analyzed.A total of 43 waterbirds species belong to 7 orders of 12 families were counted during the surveys,of which 38 were found in Caizi Lake with a density of 8.2 ind./hm2,and 42 in Shengjin Lake with a density of 3.5 ind./hm2.Geese(Anser cygnoides),bean geese(Anser fabalis),tundra swan(Cygnus columbianus),and dunlin(Calidris alpina) were the dominant species in the two shallow lakes.Species number and individual assemble reached maximum at the end of December and in early January of the following year,without coincidence of the largest flock for different ecological groups.Based on waterbird diversity across the 11 belt transects and the fishery patterns,habitats could be divided into three groups.Gruiformes,Anseriformes and Charadriiformes had relatively higher densities in the natural fishery zones and lower densities in the cage fishery zones;whereas,the density of Ardeidae showed little change across all lake zones.It is important to develop sustainable fishery patterns in shallow lakes along the middle and lower Yangtze River floodplain to better protect resources of wintering waterbirds.
基金Supported by National Natural Science Foundation of China(30960017)Fund Project of Yunnan Education Department(09Y0360)Start Fund ofDali University(KY421140)~~
文摘[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.
基金Supported by the Science and Technology Project of Food Production in Jiangxi Province(2006BAD02A04)~~
文摘[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.
基金This research is supported jointly by the National Key R&D Program of China[grant numbers 2016YFA0602100 and 2018YFC1407104]the china Special Fund for Meteorological Research in the Public Interest[grant number GYHY201506011]the National Natural Science Foundation of China[grant number 41975134].
文摘The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an important step in developing climate system models.Compared with observations and previous versions(CICE4.0 and CICE5.0),the advantages of CICE6.0(the latest version)are analyzed in this paper.It is found that CICE6.0 has the minimum interannual errors,and the seasonal cycle it simulates is the most consistent with observations.CICE4.0 overestimates winter sea-ice and underestimates summer sea-ice severely.Meanwhile,the errors of CICE5.0 in winter are larger than for the other versions.The main attention is paid to the perennial ice and the seasonal ice.The spatial distribution of root-mean-square errors indicates that the simulated errors are distributed in the Atlantic sector and the outer Arctic.Both CICE4.0 and CICE5.0 underestimate the concentration of the perennial ice and overestimate that of the seasonal ice in these areas.Meanwhile,CICE6.0 solves this problem commendably.Moreover,the decadal trends it simulates are comparatively the best,especially in the central Arctic sea.The other versions underestimate the decadal trend of the perennial ice and overestimate that of the seasonal ice.In addition,an index used to objectively describe the difference in the spatial distribution between the simulation and observation shows that CICE6.0 produces the best simulated spatial distribution.
基金financially supported by National Science and Technology Support Project (Grant No. 2012BAC19B05)
文摘Changes in the lake areas of Xainza basin in the past 33 years (1976 to 2008) were studied using Landsat data from Multispectral Scanners (1973- 1977), Thematic Mapper (1989-1992, 2007-2009), and Enhanced Thematic Mapper Plus (1999-2002). The results indicated that lakes in the study area evidently expanded from 1976 to 2008, with total expansion of 1512.64km2. The mean annual air temperature presented an upward trend with certain fluctuations from 1966 to 2008. The air temperature rise rates in the cold season (o.31~C/loa) were higher than those in the hot season (0.24℃/1oa), in the Xainza station example. Precipitation exhibited evident seasonal differences. Mean annual precipitation in hot season is 281.48 mm and cold season is 32.66 mm from 1966 to 2008 in study area. Precipitation in the hot season was the major contributor to the increase in annual precipitation. Grey relational analysis (GRA) was used to study the response of lake areas to climatic factors. The mean air temperature and precipitation were selected as comoared series, and the lake areas were regarded as the reference series. The grey relational grade (GRG) between compared series and reference series were calculated through GRA. The results indicated that changes in lake areas were mainly affected by climatic factors in the hot season. Lakes in this region were classified into three grades, namely, Grades I, II, and III according to the recharge source and elevation. The GRGs of each series varied for different grade lakes: the area of Grade III lakes were the most relevant to the hot season factors, the GRGs of precipitation and air temperature were 0.7570 and 0.6606; followed by the Grade II lakes; Grade I lakes were more sensitive to the air temperature.
基金Supported by the Public Science and Technology Research Funds Projects of Ocean(No.201305030)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120132130001)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.201022001,201262004)the National Natural Science Foundation of China(No.41006083)
文摘Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and the relationships among 11 diversity indices were explored.Generalized additive models were constructed to examine the environmental effects on diversity indices.Eleven diversity indices were grouped into four components:(1) species numbers and richness,(2) heterogeneous indices,(3) evenness,and(4) taxonomic relatedness.The results show that diversity indices among different components are complementary.Spatial patterns show that fish diversity was higher in coastal areas,which was affected by complex bottom topography and spatial variations of water mass and currents.Seasonal trends could be best explained by the seasonal migration of dominant fish species.Fish diversity generally declined with increasing depth except for taxonomic distinctness,which increased with latitude.In addition,bottom temperature had a significant effect on diversity index of richness.These results indicate that substrate complexity and environmental gradients had important influences on fish diversity patterns,and these factors should be considered in fishery resource management and conservation.Furthermore,diversity in two functional groups(demersal/pelagic fishes) was influenced by different environmental factors.Therefore,the distribution of individual species or new indicators in diversity should be applied to examine spatio-seasonal variations in fish diversity.
基金Under the auspices of Major State Basic Research Development Program of China (No.2007CB407307)National Key Technology Research and Development Program of China (No.2006BAC15B01)National Natural Science Foundation of China (No. 40671182)
文摘The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.
基金supported by funds from the National Natural Science Foundation of China (30070626)Knowledge Innovation Program of CAS (KSCX2-YW-N-46-11)
文摘Soil fauna have been receiving more and more attention because they play an important role in nutrient cycling.However,there is a lack of information on soil arthropods in the forest-steppe ecotone in the mountainous region of northern Hebei,which makes it difficult to meet the need of protecting biodiversity in this area.Soil arthropod communities were investigated in the forest-steppe ecotone in northern Hebei province to provide basic information on changes in mountain soil fertility,which could promote the development of soil arthropod communities in mountain ecotones.From the preliminary identification,a total of 7994 individual soil arthropods were collected,which belonged to 25 groups,6 classes and 24 orders.Acarina,Hymenoptera and Collembola were the dominant groups in the ecotone.The number of Acarina was higher than Collembola,and this phenomenon was obviously different from other areas in the same climate zone.The increased abundance of rare groups in the Forest zone with the richer vegetation,higher arthropod abundance and more substantial litter depth,could be interpreted as a reaction to the suitable soil environment and food supply.And these rare groups were sensitive to environmental changes,which could be regarded as biotic indicators for evaluating soil quality.The analysis of community diversity showed that the abundance index (d),the Shannon-Wiener index (H'),the evenness index (J) and the density-group index (DG) were significantly higher in the forest zone,lower in the forest-steppe zone,and lowest in the meadow-steppe zone.Seasonal variations in community composition correlated with changes in average air temperature and precipitation in this ecotone.Groups and individuals of soil arthropod communities in the three zones were present in greater numbers in the middle of the rainy season than in the early or late periods of the rainy season as a whole.At the same time,seasonal changes in soil arthropod communities from different plots were also influenced by habitat condition.