期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
多学习教与学优化算法 被引量:6
1
作者 李志南 南新元 +1 位作者 李娜 史德生 《计算机应用与软件》 CSCD 2016年第2期246-249,298,共5页
针对教与学优化算法(TLBO)局部开发能力差,易陷入局部最优的缺点,提出一种基于反向学习的多学习教与学优化算法(MTLBO)。通过反向学习技术拓展搜索空间,增加解的多样性,进一步增强算法的全局搜索能力。引入多学习机制,使其更有效地进行... 针对教与学优化算法(TLBO)局部开发能力差,易陷入局部最优的缺点,提出一种基于反向学习的多学习教与学优化算法(MTLBO)。通过反向学习技术拓展搜索空间,增加解的多样性,进一步增强算法的全局搜索能力。引入多学习机制,使其更有效地进行局部搜索,加快收敛速度。同时提出一种小概率变异策略,增加跳出局部最优的可能性。在基准测试函数上进行验证实验,结果表明,与TLBO算法、ITLBO算法以及其他优化算法相比,该算法在低维和高维函数上都取得了较好的优化效果。 展开更多
关键词 教与学优化算法 反向学习技术 多学习机制 变异策略
下载PDF
基于Web的多学习模式自主学习平台研究 被引量:3
2
作者 罗福强 熊永福 《实验技术与管理》 CAS 北大核心 2015年第5期193-195,205,共4页
通过对传统的以教师为核心、以教学活动组织过程为主线的设计理念的分析,提出以学生为中心、以学习活动过程为主线、以增强学习体验和效果为目的的全新设计理念(即基于Web的多学习模式的自主学习理念)。分析了在Internet环境下各种学习... 通过对传统的以教师为核心、以教学活动组织过程为主线的设计理念的分析,提出以学生为中心、以学习活动过程为主线、以增强学习体验和效果为目的的全新设计理念(即基于Web的多学习模式的自主学习理念)。分析了在Internet环境下各种学习模式的学习活动过程,以此为基础建立了一个基于Web的多学习模式的自主学习平台的模型,详细阐述了该模型的系统需求、设计原则和系统架构。 展开更多
关键词 多学习模式 教学资源共享 自主学习平台
下载PDF
基于多学习模式的网络化案例式教学模型架构研究
3
作者 杨金山 安志宏 《现代计算机》 2010年第5期150-152,共3页
信息网络环境下的案例式教学与多学习模式的运用可以更大程度地提供给学习者以自主性与学习方便。在信息网络环境下基于多学习模式的案例式网络教学系统中的要素关系不再是简单的单向教学活动,而变得更加丰富。通过对基于多学习模式案... 信息网络环境下的案例式教学与多学习模式的运用可以更大程度地提供给学习者以自主性与学习方便。在信息网络环境下基于多学习模式的案例式网络教学系统中的要素关系不再是简单的单向教学活动,而变得更加丰富。通过对基于多学习模式案例式网络教学中各元素间关系的分析,逐步建立系统的概念模型、系统实现模型与体系架构。 展开更多
关键词 多学习模式 网络化案例式教学 模型架构
下载PDF
基于多学习因子粒子群算法的微博用户影响力分析 被引量:2
4
作者 张硕 杨一平 武装 《软科学》 CSSCI 北大核心 2017年第10期140-144,共5页
分析了用户与其所在网络社团之间的关系,将岛屿模型的思想应用于标准粒子群算法的改进,提出了一种多学习因子粒子群算法(MPSO)。该算法综合考量了用户自身属性和社团关系网络特性两种影响因子,克服了网络水军和僵尸粉的干扰,同时这种改... 分析了用户与其所在网络社团之间的关系,将岛屿模型的思想应用于标准粒子群算法的改进,提出了一种多学习因子粒子群算法(MPSO)。该算法综合考量了用户自身属性和社团关系网络特性两种影响因子,克服了网络水军和僵尸粉的干扰,同时这种改进的粒子群算法使得粒子在进化过程后期更具多样性,避免陷入局部最优。最后通过与Page Rank算法、Behavior-Relationship Rank算法进行对比,充分验证了MPSO算法的准确性以及可靠性。 展开更多
关键词 用户影响力 多学习因子粒子群算法 岛屿模型 社交网络
下载PDF
基于多学习多目标鸽群优化的动态环境经济调度 被引量:6
5
作者 闫李 李超 +1 位作者 柴旭朝 瞿博阳 《郑州大学学报(工学版)》 CAS 北大核心 2019年第4期8-14,共7页
针对电力系统动态环境经济调度(DEED)问题,提出了一种基于多学习策略的多目标鸽群优化(MLMPIO)算法.在多学习策略中,种群个体可以向外部存档集中的多个全局最优位置以及个体的历史最优位置进行学习,进而保持种群的多样性和全局搜索能力... 针对电力系统动态环境经济调度(DEED)问题,提出了一种基于多学习策略的多目标鸽群优化(MLMPIO)算法.在多学习策略中,种群个体可以向外部存档集中的多个全局最优位置以及个体的历史最优位置进行学习,进而保持种群的多样性和全局搜索能力,避免陷入早熟收敛.引入了小概率变异扰动机制,进一步增强种群的多样性.为提升算法的运行效率,采用容量自适应变化的外部存档集来存储当前Pareto最优解集.为验证所提算法的性能,将MLMPIO应用于10机组电力系统的DEED问题求解.仿真结果证明了MLMPIO算法解决此类问题的可行性和有效性. 展开更多
关键词 环境经济调度 多目标优化 鸽群优化 多学习 小概率变异
下载PDF
三多学习法
6
作者 郭玉柱 《高中数理化》 北大核心 2004年第4期35-36,共2页
关键词 高中 学习辅导 化学 多学习 元素周期律
下载PDF
基于多学习单元卷积神经网络的雷达辐射源信号识别 被引量:2
7
作者 普运伟 郭江 +1 位作者 刘涛涛 吴海潇 《北京邮电大学学报》 EI CAS CSCD 北大核心 2021年第6期74-82,共9页
现有基于人工提取特征的复杂体制雷达辐射源信号识别方法时效性低,识别准确率不佳.为此,提出了一种基于多学习单元卷积神经网络的识别方法.首先对辐射源信号的模糊函数进行高斯平滑,以校正噪声带来的毛刺与畸变;然后提取其正交切片作为... 现有基于人工提取特征的复杂体制雷达辐射源信号识别方法时效性低,识别准确率不佳.为此,提出了一种基于多学习单元卷积神经网络的识别方法.首先对辐射源信号的模糊函数进行高斯平滑,以校正噪声带来的毛刺与畸变;然后提取其正交切片作为进一步的特征提取对象;最后构建多学习单元卷积神经网络,学习和提取正交切片深层、泛在的特征,并通过softmax分类器进行分类识别.仿真实验结果表明,所提方法在信噪比为-2 dB时对6类典型雷达信号的整体平均识别率均保持在99.86%以上,即便是在-6 dB环境中,雷达信号的识别率也可达到88.50%,在极低信噪比条件下具有良好的性能和可行性. 展开更多
关键词 雷达辐射源信号 模糊函数 信号识别 深度学习 多学习单元卷积神经网络
原文传递
Slope displacement prediction based on multisource domain transfer learning for insufficient sample data 被引量:1
8
作者 Zheng Hai-Qing Hu Lin-Ni +2 位作者 Sun Xiao-Yun Zhang Yu Jin Shen-Yi 《Applied Geophysics》 SCIE CSCD 2024年第3期496-504,618,共10页
Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displ... Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data. 展开更多
关键词 slope displacement multisource domain transfer learning(MDTL) variational mode decomposition(VMD) generative adversarial network(GAN) Wasserstein-GAN
下载PDF
基于RGB-D图像特征的人体行为识别 被引量:9
9
作者 唐超 王文剑 +2 位作者 张琛 彭华 李伟 《模式识别与人工智能》 EI CSCD 北大核心 2019年第10期901-908,共8页
针对现有的多模态特征融合方法不能有效度量不同特征的贡献度的问题,文中提出基于RGB-深度(RGB-D)图像特征的人体动作识别方法.首先获取基于RGB模态信息的方向梯度直方图特征、基于深度图像模态信息的时空兴趣点特征和基于关节模态信息... 针对现有的多模态特征融合方法不能有效度量不同特征的贡献度的问题,文中提出基于RGB-深度(RGB-D)图像特征的人体动作识别方法.首先获取基于RGB模态信息的方向梯度直方图特征、基于深度图像模态信息的时空兴趣点特征和基于关节模态信息的人体关节点位置特征,分别表征人体动作.采用不同距离度量公式的最近邻分类器对这3种不同模态特征表示的预测样本进行集成决策分类.在公开数据集上的实验表明,文中方法具有简单、快速,高效的特点. 展开更多
关键词 人体动作识别 RGB-深度 多学习 多模态特征 最近邻分类器
下载PDF
多平台多软件协作提升线上教学效果的研究实践:以《材料表界面》课程为例 被引量:1
10
作者 陈倩倩 王仁杰 +2 位作者 任瑛 程巧换 彭进 《山东化工》 CAS 2020年第24期227-228,共2页
全球范围内的新型冠状病毒肺炎的流行使得线上教学成为高校授课的主要形式,这也是大多数高校首次、系统地、大范围的使用线上教学模式。为了配合线上教学流程和模式,国内快速涌现了一批线上学习平台及软件,其中包括应用较为广泛的慕课... 全球范围内的新型冠状病毒肺炎的流行使得线上教学成为高校授课的主要形式,这也是大多数高校首次、系统地、大范围的使用线上教学模式。为了配合线上教学流程和模式,国内快速涌现了一批线上学习平台及软件,其中包括应用较为广泛的慕课、爱课堂,甚至哔哩哔哩、优酷等平台,腾讯会议、学习通、腾讯课堂等软件,这些平台和软件在协助教师教学的顺利进行,调动学生学习的积极性、增加学生学习的趣味性等方面发挥了积极的作用。但是如何更好、更高效地利用这些平台仍需要进一步探索研究,特别是针对理工科。本文介绍一种结合多个学习平台,协同提升高校教师网络教学效果的研究实践,以材料表界面为例,分析各个软件之间在学生课前预习、课间学习讨论、课后复习中的效果,为优化各学习平台软件的使用及发展,以及线上教学的广泛运用提供参考。 展开更多
关键词 多学习平台 协同提升 高校 线上教学
下载PDF
Novel feature fusion method for speech emotion recognition based on multiple kernel learning
11
作者 金赟 宋鹏 +1 位作者 郑文明 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期129-133,共5页
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl... In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 speech emotion recognition multiple kemellearning feature fusion support vector machine
下载PDF
基于多互动的精英智能优化算法
12
作者 刘俊梅 马永刚 +1 位作者 张振祺 陈怡君 《榆林学院学报》 2019年第2期85-91,共7页
教与学优化(teaching-learning-based optimization,TLBO)算法是一种模拟现实生活中教师与学生之间的教学过程的新型启发式优化算法,针对基本TLBO算法寻优精度低、稳定性差的问题,给出一种"因材施教"和"多学习"精... 教与学优化(teaching-learning-based optimization,TLBO)算法是一种模拟现实生活中教师与学生之间的教学过程的新型启发式优化算法,针对基本TLBO算法寻优精度低、稳定性差的问题,给出一种"因材施教"和"多学习"精英教与学优化算法.在基本TLBO算法的基础上,采用保留班级精英学员策略的方法加强算法的收敛能力,在教学阶段实行"因材施教"教学过程,使教学过程更符合实际、每个学员都受益、更具有针对性、保证班级学员的多样性,在学习阶段实行"多学习"学习过程,学员随意互动交流学习,提高算法的搜索能力.对6个标准函数的测试结果表明,ETLBO-AM算法与其他算法相比在寻优精度和稳定性上更有优势,可以取得满意的结果. 展开更多
关键词 教与学优化算法 精英策略 因材施教 多学习
下载PDF
新闻工作者创作精品要做到“五多” 被引量:1
13
作者 符丽云 《新闻传播》 2022年第8期90-91,共2页
在发展迅猛的多媒体融合发展的趋势下,如何打造一支政治过硬、本领高强、求实创新、能打胜仗的宣传思想工作队伍,对于充分发挥媒体的舆论导向作用起到至关重要的作用。如何采写“有思想、有温度、有品质”的作品,这就需要新闻工作者在... 在发展迅猛的多媒体融合发展的趋势下,如何打造一支政治过硬、本领高强、求实创新、能打胜仗的宣传思想工作队伍,对于充分发挥媒体的舆论导向作用起到至关重要的作用。如何采写“有思想、有温度、有品质”的作品,这就需要新闻工作者在工作中必须做到“五多”,努力创作出符合时代特征、百姓喜爱的精品佳作。 展开更多
关键词 多学习 多观察 多思考 多调研 多动笔
下载PDF
ON HYBRID POSITION/FORCE COORDINATED LEARNING CONTROL OF MULTIPLE MANIPULATORS
14
作者 王从庆 尹朝万 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第2期114-119,共6页
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje... In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme. 展开更多
关键词 multiple manipulators learning control hybrid control coordinated control
下载PDF
Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning 被引量:3
15
作者 陈恺 戴敏 +2 位作者 张志胜 陈平 史金飞 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期434-438,共5页
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex... To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods. 展开更多
关键词 quad flat non-lead QFN surface defects opposition-learning firefly algorithm multilevel Otsu thresholding algorithm
下载PDF
如何培养小学生的数学学科素养
16
作者 周维 《课程教育研究(学法教法研究)》 2019年第12期105-105,共1页
小学阶段对孩子来说是知识启蒙的阶段,这个阶段对于孩子来说,是十分重要的阶段,它直接联系到孩子的智力开发,对事物探索的敏感性,在这个阶段,孩子们学好数学对于他们未来的学习是十分有好处的,但是数学这门科目比较抽象,对于初期开始学... 小学阶段对孩子来说是知识启蒙的阶段,这个阶段对于孩子来说,是十分重要的阶段,它直接联系到孩子的智力开发,对事物探索的敏感性,在这个阶段,孩子们学好数学对于他们未来的学习是十分有好处的,但是数学这门科目比较抽象,对于初期开始学习的孩子来说,学习起来是有一点难度的,这篇文章就如何培养小学生的数学学科素养展开探究,探讨用哪种方式可以让孩子能更顺利开始知识启蒙。 展开更多
关键词 数学素养 多提问 多学习
下载PDF
A distributed algorithm for signal coordination of multiple agents with embedded platoon dispersion model
17
作者 别一鸣 王殿海 +1 位作者 马东方 朱自博 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期311-315,共5页
In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimi... In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm. 展开更多
关键词 multiple agents signal coordination reinforce learning platoon dispersion model
下载PDF
Human interaction recognition based on sparse representation of feature covariance matrices 被引量:3
18
作者 WANG Jun ZHOU Si-chao XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期304-314,共11页
A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to e... A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to eliminate the irrelevant trajectories,which could greatly reduce the noise influence on feature extraction.Then,the trajectory tunnels were characterized by means of feature covariance matrices.In this way,the discriminative descriptors could be extracted,which was also an effective solution to the problem that the description of the feature second-order statistics is insufficient.After that,an over-complete dictionary was learned with the descriptors and all the descriptors were encoded using sparse coding(SC).Classification was achieved using multiple instance learning(MIL),which was more suitable for complex environments.The proposed method was tested and evaluated on the WEB Interaction dataset and the UT interaction dataset.The experimental results demonstrated the superior efficiency. 展开更多
关键词 interaction recognition dense trajectory sparse coding MIL
下载PDF
Serial structure multi-task learning method for predicting reservoir parameters 被引量:1
19
作者 Xu Bin-Sen Li Ning +4 位作者 Xiao Li-Zhi Wu Hong-Liang Feng-Zhou Wang Bing Wang Ke-Wen 《Applied Geophysics》 SCIE CSCD 2022年第4期513-527,604,共16页
Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of... Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of multi-task learning,this paper uses six types of logging data—acoustic logging(AC),gamma ray(GR),compensated neutron porosity(CNL),density(DEN),deep and shallow lateral resistivity(LLD)and shallow lateral resistivity(LLS)—that are inputs and three reservoir parameters that are outputs to build a porosity saturation permeability network(PSP-Net)that can predict porosity,saturation,and permeability values simultaneously.These logging data are obtained from 108 training wells in a medium₋low permeability oilfield block in the western district of China.PSP-Net method adopts a serial structure to realize transfer learning of reservoir-parameter characteristics.Compared with other existing methods at the stage of academic exploration to simulating industrial applications,the proposed method overcomes the disadvantages inherent in single-task learning reservoir-parameter prediction models,including easily overfitting and heavy model-training workload.Additionally,the proposed method demonstrates good anti-overfitting and generalization capabilities,integrating professional knowledge and experience.In 37 test wells,compared with the existing method,the proposed method exhibited an average error reduction of 10.44%,27.79%,and 28.83%from porosity,saturation,permeability calculation.The prediction and actual permeabilities are within one order of magnitude.The training on PSP-Net are simpler and more convenient than other single-task learning methods discussed in this paper.Furthermore,the findings of this paper can help in the re-examination of old oilfield wells and the completion of logging data. 展开更多
关键词 Deep learning Multi-task learning Reservoir-parameter prediction
下载PDF
Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening 被引量:2
20
作者 Tai-ran Wang Jian-cong Li +3 位作者 Wu Shu Su-lei Hu Run-hai Ouyang Wei-xue Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第6期703-711,I0002,共10页
Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attenti... Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60000 adsorption data.Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts. 展开更多
关键词 Machine learning Heterogenous catalysis Adsorption energy Bimetallic cat-alyst
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部