期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Grassmann流形G(2,8)上的几何
1
作者 黄卉 《苏州大学学报(自然科学版)》 CAS 2001年第3期23-26,33,共5页
利用Clifford代数建立映射γ :G(2 ,8)→S6,它使Grassmann流形G(2 ,8)成为单位球面S6 上的纤维丛 ,纤维型是复射影空间CP3.利用calibration证明复射影空间CP3和单位球面S6 在同调意义下是G(2 ,8)中的体积极小子流形 ,且生成G(2 ,8)的 6... 利用Clifford代数建立映射γ :G(2 ,8)→S6,它使Grassmann流形G(2 ,8)成为单位球面S6 上的纤维丛 ,纤维型是复射影空间CP3.利用calibration证明复射影空间CP3和单位球面S6 在同调意义下是G(2 ,8)中的体积极小子流形 ,且生成G(2 ,8)的 6维同调群H6(G(2 ,8) ) 展开更多
关键词 GRASSMANN流形 黎曼联络 CLIFFORD代数 纤维丛 微分几何 同调群 多射影空间
下载PDF
Self-maps of p-local infinite projective spaces 被引量:1
2
作者 LIN XianZu 1,2 1 College of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350108,China 2 Institute of Mathematics,Academy of Mathematics and Systems Science,Beijing 100190,China 《Science China Mathematics》 SCIE 2012年第4期739-744,共6页
Abstract Denote by z(p) (resp. Zp) the p localization (resp. p completion) of z. Then we have the canonical inclusion Z(p)→ zp. Let S2n-1(p) be the p-local (2n- 1)-sphere and let B2n(p) be a connected p... Abstract Denote by z(p) (resp. Zp) the p localization (resp. p completion) of z. Then we have the canonical inclusion Z(p)→ zp. Let S2n-1(p) be the p-local (2n- 1)-sphere and let B2n(p) be a connected p-local space satisfying S2n-l(p)≌ΩB2n(p), then H*B2n(p),Z(p)) = Z(p)[U] with |u| = 2n. Define the degree of a self-map f of B2n(p) to be k E Z(p) such that f*(u) = ku. Using the theory of integer-valued polynomials we show that there exists a self-map of B2n(p) of degree k if and only if k is an n-th power in Zp. 展开更多
关键词 infinite projective space self-map integer-valued polynomial
原文传递
Uniqueness Theorems for Meromorphic Mappings in Several Complex Variables into P^N(C) with Two Families of Moving Targets
3
作者 Zhonghua WANG Zhenhan TU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第5期719-732,共14页
The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier... The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier work. 展开更多
关键词 Meromorphic mapping Moving target Uniqueness theorem Valuedistribution theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部