In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migr...In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.展开更多
Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FM...Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FMLS) method is developed. Its performances are theoretically analyzed and digital simulation is made to compare FMLS with multistage least squares (MSLS), correlation least squares(COR LS) and LS for their computer speed and identification accuracy. Finally, FMLS is applied to identifying the heat excharger dynamics. It is shown that FMLS is a good and effective identification technique.展开更多
基金supported by National Natural Science Foundation of China(Nos.41904101,41774133)Natural Science Foundation of Shandong Province(ZR2019QD004)+1 种基金Fundamental Research Funds for the Central Universities(No.19CX02010A)the Open Funds of SINOPEC Key Laboratory of Geophysics(Nos.wtyjy-wx2019-01-03,wtyjywx2018-01-06)
文摘In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.
文摘Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FMLS) method is developed. Its performances are theoretically analyzed and digital simulation is made to compare FMLS with multistage least squares (MSLS), correlation least squares(COR LS) and LS for their computer speed and identification accuracy. Finally, FMLS is applied to identifying the heat excharger dynamics. It is shown that FMLS is a good and effective identification technique.