针对三维重建对细小特征及边缘区域重建欠佳的问题,提出了一个基于特征对齐与上下文引导的多视图三维重建网络,即AGA-MVSNet。首先,构建了一个特征对齐模块(FA)与特征选择模块(FS),能够将特征金字塔不同层级的特征先对齐之后再进行融合...针对三维重建对细小特征及边缘区域重建欠佳的问题,提出了一个基于特征对齐与上下文引导的多视图三维重建网络,即AGA-MVSNet。首先,构建了一个特征对齐模块(FA)与特征选择模块(FS),能够将特征金字塔不同层级的特征先对齐之后再进行融合,提高对小尺寸物体和边缘区域的特征提取能力;然后,在代价体正则化中加入了一个上下文引导模块,该模块能够在略微增加运行内存的情况下充分利用周围信息,增强成本体积之间的相关性,提高三维重建的精度与完整度;最后,在DTU数据集上进行了实验,实验结果表明,该方法相比于基准网络CasMVSNet精度提升了2.2%,整体重建质量提升了2.5%。此外,在Tanks and Temples数据集上的表现相较一些已知的方法也十分优异,且在BlendedMVS数据集上也生成了不错的点云效果。展开更多
跨模态行人重识别研究的重难点主要来自于行人图像之间巨大的模态差异和模态内差异。针对这些问题,提出一种结合多尺度特征与混淆学习的网络结构。为实现高效的特征提取、缩小模态内差异,将网络设计为多尺度特征互补的形式,分别学习行...跨模态行人重识别研究的重难点主要来自于行人图像之间巨大的模态差异和模态内差异。针对这些问题,提出一种结合多尺度特征与混淆学习的网络结构。为实现高效的特征提取、缩小模态内差异,将网络设计为多尺度特征互补的形式,分别学习行人的局部细化特征与全局粗糙特征,从细粒度和粗粒度两方面来增强网络的特征表达能力。利用混淆学习策略,模糊网络的模态识别反馈,挖掘稳定且有效的模态无关属性应对模态差异,来提高特征对模态变化的鲁棒性。在大规模数据集SYSU-MM01的全搜索模式下该算法首位击中率和平均精度(mean average precision,mAP)的结果分别为76.69%和72.45%,在RegDB数据集的可见光到红外模式下该算法首位击中率和mAP的结果分别为94.62%和94.60%,优于现有的主要方法,验证了所提方法的有效性。展开更多
随着建筑物能源消耗的不断升高,高精度与高泛化能力的非侵入式负荷监测技术的研究具有重大意义。针对当前负荷分解方法存在的问题,提出了一种基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法。将实例-批归一化网络与U形网络...随着建筑物能源消耗的不断升高,高精度与高泛化能力的非侵入式负荷监测技术的研究具有重大意义。针对当前负荷分解方法存在的问题,提出了一种基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法。将实例-批归一化网络与U形网络结合,提取总负荷数据的上下文信息,并利用跨越连接实现对不同尺度的细节特征与全局特征的融合。针对多特征特点,引入高效通道注意力网络,使模型聚焦重要特征。引入多任务学习框架与后处理操作,去除输出的假阳性片段,实现对目标电器的精准识别。将所提模型与几种代表性模型在UK-DALE(UK domestic appliance-level electricity)数据集与REDD(reference energy disaggregation data set)上进行对比实验,结果表明,所提模型的性能优于对比模型,具有出色的负荷分解能力与状态识别能力。展开更多
文摘针对三维重建对细小特征及边缘区域重建欠佳的问题,提出了一个基于特征对齐与上下文引导的多视图三维重建网络,即AGA-MVSNet。首先,构建了一个特征对齐模块(FA)与特征选择模块(FS),能够将特征金字塔不同层级的特征先对齐之后再进行融合,提高对小尺寸物体和边缘区域的特征提取能力;然后,在代价体正则化中加入了一个上下文引导模块,该模块能够在略微增加运行内存的情况下充分利用周围信息,增强成本体积之间的相关性,提高三维重建的精度与完整度;最后,在DTU数据集上进行了实验,实验结果表明,该方法相比于基准网络CasMVSNet精度提升了2.2%,整体重建质量提升了2.5%。此外,在Tanks and Temples数据集上的表现相较一些已知的方法也十分优异,且在BlendedMVS数据集上也生成了不错的点云效果。
文摘跨模态行人重识别研究的重难点主要来自于行人图像之间巨大的模态差异和模态内差异。针对这些问题,提出一种结合多尺度特征与混淆学习的网络结构。为实现高效的特征提取、缩小模态内差异,将网络设计为多尺度特征互补的形式,分别学习行人的局部细化特征与全局粗糙特征,从细粒度和粗粒度两方面来增强网络的特征表达能力。利用混淆学习策略,模糊网络的模态识别反馈,挖掘稳定且有效的模态无关属性应对模态差异,来提高特征对模态变化的鲁棒性。在大规模数据集SYSU-MM01的全搜索模式下该算法首位击中率和平均精度(mean average precision,mAP)的结果分别为76.69%和72.45%,在RegDB数据集的可见光到红外模式下该算法首位击中率和mAP的结果分别为94.62%和94.60%,优于现有的主要方法,验证了所提方法的有效性。
文摘随着建筑物能源消耗的不断升高,高精度与高泛化能力的非侵入式负荷监测技术的研究具有重大意义。针对当前负荷分解方法存在的问题,提出了一种基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法。将实例-批归一化网络与U形网络结合,提取总负荷数据的上下文信息,并利用跨越连接实现对不同尺度的细节特征与全局特征的融合。针对多特征特点,引入高效通道注意力网络,使模型聚焦重要特征。引入多任务学习框架与后处理操作,去除输出的假阳性片段,实现对目标电器的精准识别。将所提模型与几种代表性模型在UK-DALE(UK domestic appliance-level electricity)数据集与REDD(reference energy disaggregation data set)上进行对比实验,结果表明,所提模型的性能优于对比模型,具有出色的负荷分解能力与状态识别能力。