Coastal areas of Bangladesh are especially vulnerable due to their physiographic location and exposure to natural calamities. Around 35 million people living in coastal areas have no access or limited access to safe d...Coastal areas of Bangladesh are especially vulnerable due to their physiographic location and exposure to natural calamities. Around 35 million people living in coastal areas have no access or limited access to safe drinking water. Contamination of water sources by salinity, arsenic or iron are the principal causes of water scarcity. Rising sea levels and unevenness of climatic events due to climate change will exacerbate the situation in coastal areas, especially in the southwestern coastal zone. This study examines one of the vulnerable coastal upazila Tala at Satkhira(an 'upazila' is a medium level administrative unit in Bangladesh) in the southwestern zone of Bangladesh to understand the gravity of the problems. The study develops a GIS based multi-criteria analysis to identify suitable options and locations of fresh water as part of a current and future solution to the problems and further deterioration. To fulfill the objectives, a questionnaire-based GPS guided field survey was conducted to collect details of field level conditions in order to find a suitable solution. Because aquifers are considered the primary source of drinking water, field data have been analyzed for two distinct aquifers, one relatively shallow and one deeper, to understand aquifer quality. Potentiality of different water sources the socioeconomic status of communities, types of water use and corresponding sources and water demand are also evaluated. The analysis finds that alternative water sources that are safe are difficult to find, because both surface and groundwater-based sources are already contaminated, and there are no nearby, easily accessible safe sources. Groundwater-based sources are contaminated by arsenic, iron or salinity, and surface water-based sources are not in use due to maintenance and management issues. In some cases, surface water sources are polluted by flash flooding of high saline water during storm surges or seepage from saline water-based aquacultures. Multiple limitations identified during field observations and field data analysis were considered as an analytical parameter A GIS based multi-criteria analysis incorporated field data, including Geo-spatial and socioeconomic information for road networks, settlement locations, number of households, quality and quantity of existing water sources, water demand and business opportunities. The analysis found some potential options in distributed locations which are consistent with community demand. Suggested options made use of technologies that are already understood and commonly used by communities, like deep tubewells, PSFs(Pond Sand Filter) and WTPs(Water Treatment Plant). In the study area, PSF is the most commonly used method and to make this surface water-based technology sustainable some precautionary measurements are suggested.展开更多
Multi-scale chemo-mechanical effects and microscopic failure modes are explored in the evolution of strength change of slip surface. Direct shear equipments, scanning electro-microscope and X-ray diffraction are used ...Multi-scale chemo-mechanical effects and microscopic failure modes are explored in the evolution of strength change of slip surface. Direct shear equipments, scanning electro-microscope and X-ray diffraction are used to trace the change in strength of remodeled soils of slip surfaces in the Three Gorges area. Results show that there is a release of alkali metals and concentration of clay minerals on the surface. During the tests, potassium ions were released, the cementation was reduced, and the ratio of interlayer minerals varied associated with strength change. Accordingly, illites or montmorillonite-illite mixtures turned into montmorillonite. So the strength change originates from the release of alkali metal ions on molecular scale that leads to the concentration and transition of clay minerals on meso-scale. The evolution of slip surface and soil strength is a typical process involving multi-scale processes of structure changes and chemo-mechanical coupling.展开更多
基金The Colleges and Universities Humanities and Social Science Fund Project in Jiangxi Province(JC1414).
文摘Coastal areas of Bangladesh are especially vulnerable due to their physiographic location and exposure to natural calamities. Around 35 million people living in coastal areas have no access or limited access to safe drinking water. Contamination of water sources by salinity, arsenic or iron are the principal causes of water scarcity. Rising sea levels and unevenness of climatic events due to climate change will exacerbate the situation in coastal areas, especially in the southwestern coastal zone. This study examines one of the vulnerable coastal upazila Tala at Satkhira(an 'upazila' is a medium level administrative unit in Bangladesh) in the southwestern zone of Bangladesh to understand the gravity of the problems. The study develops a GIS based multi-criteria analysis to identify suitable options and locations of fresh water as part of a current and future solution to the problems and further deterioration. To fulfill the objectives, a questionnaire-based GPS guided field survey was conducted to collect details of field level conditions in order to find a suitable solution. Because aquifers are considered the primary source of drinking water, field data have been analyzed for two distinct aquifers, one relatively shallow and one deeper, to understand aquifer quality. Potentiality of different water sources the socioeconomic status of communities, types of water use and corresponding sources and water demand are also evaluated. The analysis finds that alternative water sources that are safe are difficult to find, because both surface and groundwater-based sources are already contaminated, and there are no nearby, easily accessible safe sources. Groundwater-based sources are contaminated by arsenic, iron or salinity, and surface water-based sources are not in use due to maintenance and management issues. In some cases, surface water sources are polluted by flash flooding of high saline water during storm surges or seepage from saline water-based aquacultures. Multiple limitations identified during field observations and field data analysis were considered as an analytical parameter A GIS based multi-criteria analysis incorporated field data, including Geo-spatial and socioeconomic information for road networks, settlement locations, number of households, quality and quantity of existing water sources, water demand and business opportunities. The analysis found some potential options in distributed locations which are consistent with community demand. Suggested options made use of technologies that are already understood and commonly used by communities, like deep tubewells, PSFs(Pond Sand Filter) and WTPs(Water Treatment Plant). In the study area, PSF is the most commonly used method and to make this surface water-based technology sustainable some precautionary measurements are suggested.
基金supported by the National Natural Science Foundation of China (Grant No. 40171005)the Key Project of National Natural Science Foundation of China (Grant No. 41030742)+1 种基金Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process of Chinese Academy of Sciencesthe Natural Science Foundation of U.S.A. (Grant No. 0324543)
文摘Multi-scale chemo-mechanical effects and microscopic failure modes are explored in the evolution of strength change of slip surface. Direct shear equipments, scanning electro-microscope and X-ray diffraction are used to trace the change in strength of remodeled soils of slip surfaces in the Three Gorges area. Results show that there is a release of alkali metals and concentration of clay minerals on the surface. During the tests, potassium ions were released, the cementation was reduced, and the ratio of interlayer minerals varied associated with strength change. Accordingly, illites or montmorillonite-illite mixtures turned into montmorillonite. So the strength change originates from the release of alkali metal ions on molecular scale that leads to the concentration and transition of clay minerals on meso-scale. The evolution of slip surface and soil strength is a typical process involving multi-scale processes of structure changes and chemo-mechanical coupling.