期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究 被引量:1
1
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 多尺度特征
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
2
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
基于多尺度自适应残差卷积神经网络的新能源配电网故障定位技术 被引量:4
3
作者 杨鹏杰 徐宇 郑晨一 《水利水电技术(中英文)》 北大核心 2023年第S02期439-446,共8页
随着新型电力系统建设的推进,分布式新能源接入配电网的比例不断提升,使得电网潮流分布更加复杂,对配电网的故障定位要求越来越高,导致现有的故障定位方法准确率低、稳定性差。对此提出一种基于多尺度自适应残差卷积神经网络的新能源配... 随着新型电力系统建设的推进,分布式新能源接入配电网的比例不断提升,使得电网潮流分布更加复杂,对配电网的故障定位要求越来越高,导致现有的故障定位方法准确率低、稳定性差。对此提出一种基于多尺度自适应残差卷积神经网络的新能源配电网故障定位方法。首先,对故障电流使用变分模态分解,得到一系列征模态函数;然后,使用多尺度自适应卷积动态调整卷积核尺寸、残差卷积提升网络学习能力的方式构建多尺度自适应残差卷积神经网络模型,特征学习输入的故障电流本征模态函数;最后,经过Softmax分类器实现故障区段分类,完成故障定位。仿真结果表明,所提方法面对新能源接入的配电网能够实现不同故障的准确定位,并且对高阻接地故障仍然具有较高的准确率。和常见的卷积神经网络、支持向量机相比,配电网故障定位准确率分别提升了5.63%、9.31%,验证了该方法的有效性。 展开更多
关键词 新型电力系统 新能源 配电网 故障定位 多尺度自适应残差卷积神经网络
下载PDF
基于改进卷积神经网络的变工况轴承故障诊断
4
作者 万欣 牛玉广 《轴承》 北大核心 2024年第8期68-73,79,共7页
原始信号中的故障特征随工况变化而散布在不同的观测尺度上,针对传统卷积神经网络(CNN)模型仅从单一尺度提取特征,容易出现域移现象并丢失其他尺度信息的问题,提出了基于多尺度自适应加权卷积神经网络(MSAWCNN)的故障诊断模型。首先,采... 原始信号中的故障特征随工况变化而散布在不同的观测尺度上,针对传统卷积神经网络(CNN)模型仅从单一尺度提取特征,容易出现域移现象并丢失其他尺度信息的问题,提出了基于多尺度自适应加权卷积神经网络(MSAWCNN)的故障诊断模型。首先,采用多个尺度的卷积核并行提取不同观测尺度上的特征;然后,引入自适应加权结构,动态调制多尺度特征以削弱运行条件对特征表达的影响;最后,使用全局均值池化(GAP)层代替全连接层,减少运算量并避免过拟合。利用西安交通大学转速连续变化的轴承数据集进行试验验证的结果表明:MSAWCNN模型的平均准确率达99.69%,具有较强的抗噪性,能从多个尺度全面地提取故障特征,适用于变工况下的轴承故障诊断。 展开更多
关键词 滚动轴承 故障诊断 变工况 卷积神经网络 自适应 加权 多尺度分析 特征提取
下载PDF
PSO优化多尺度一维卷积神经网络的风机基础螺栓松动诊断 被引量:5
5
作者 徐培文 陈仁祥 +3 位作者 胡小林 杨黎霞 唐林林 林立 《振动与冲击》 EI CSCD 北大核心 2022年第4期86-92,共7页
为在非经验指导下获取多尺度一维卷积神经网络中卷积核数目和尺度最优参数,实现风机基础螺栓松动智能诊断,提出粒子群优化(particle swarm optimization, PSO)多尺度一维卷积神经网络的风机基础螺栓松动诊断方法。首先,获取风机一维原... 为在非经验指导下获取多尺度一维卷积神经网络中卷积核数目和尺度最优参数,实现风机基础螺栓松动智能诊断,提出粒子群优化(particle swarm optimization, PSO)多尺度一维卷积神经网络的风机基础螺栓松动诊断方法。首先,获取风机一维原始振动信号,划分训练集与验证集;然后,将多尺度一维卷积神经网络中卷积核数目和尺度作为PSO的粒子,以验证精度作为适应度值,根据适应度值更新粒子速度和位置,经训练后获得最优卷积核数目和尺度参数下的多尺度一维卷积神经网络;最后,输入测试样本,得到风机基础螺栓松动诊断结果。在稳定转速和升降速下进行风机基础螺栓松动诊断试验,结果表明,PSO优化多尺度一维卷积神经网络的风机基础螺栓松动诊断方法可在非经验指导下获取最优参数,可从一维原始信号中提取出有效松动特征,具备良好的松动诊断效果。 展开更多
关键词 风机基础螺栓 松动诊断 多尺度一维卷积神经网络 粒子群优化(PSO) 适应度值
下载PDF
基于多尺度多任务卷积神经网络的人群计数 被引量:7
6
作者 曹金梦 倪蓉蓉 杨彪 《计算机应用》 CSCD 北大核心 2019年第1期199-204,共6页
在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;... 在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;其次通过构建多尺度卷积神经网络解决人群尺度不一问题,以多任务学习机制同时估计密度图及人群密度等级,解决人群分布不均问题;最后设计一种加权损失函数,提高人群计数准确率。在UCF_CC_50和World Expo'10数据库上进行了评估,验证了自适应人形核的有效性。实验结果表明:所提算法比Sindagi等的方法 (SINDAGI V A,PATEL V M. CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway,NJ:IEEE,2017:1-6)在UCF_CC_50数据库上平均绝对误差(MAE)数值和均方误差(MSE)数值分别降低约1. 7和45;与Zhang等的方法(ZHANG Y,ZHOU D,CHEN S,et al. Single-image crowd counting via multi-column convolutional neural network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Computer Society,2016:589-597)相比,在World Expo'10数据库上所提算法的MAE值降低约1. 5,且在真实公共汽车数据库上仅0~3人的计数误差,表明其实用性较强。 展开更多
关键词 人群计数 多尺度 多任务学习 卷积神经网络 自适应人形核 加权损失函数
下载PDF
基于深度神经网络的单幅图像盲去噪算法 被引量:3
7
作者 李晨 许雪 郭业才 《电子测量技术》 北大核心 2023年第21期183-192,共10页
针对大多去噪网络仅在合成噪声去噪任务上表现良好,且只从单一尺度上提取特征,不能够更好的重构出干净的图像等问题,本文提出了一种多尺度特征融合的真实噪声图像盲去噪算法。该算法的横向网络结构利用自适应密集残差块提取同一尺度的... 针对大多去噪网络仅在合成噪声去噪任务上表现良好,且只从单一尺度上提取特征,不能够更好的重构出干净的图像等问题,本文提出了一种多尺度特征融合的真实噪声图像盲去噪算法。该算法的横向网络结构利用自适应密集残差块提取同一尺度的丰富特征,并且有选择性的增强信息量大的特征,纵向网络结构利用金字塔层与编-解码器进一步获得不同的感受野,实现多尺度特征提取,横向同一尺度的特征与纵向不同尺度的特征充分融合更有利于噪声去除,保留图像的边缘细节。在真实噪声测试集(DND和SIDD)上对提出的网络进行评估,峰值信噪比(PSNR)分别为39.62和39.49,结构相似性(SSIM)分别为0.956和0.954。实验结果表明,本文提出的网络取得了更加优越的性能表现。 展开更多
关键词 卷积神经网络 真实噪声图像去噪 自适应密集连接残差 多尺度特征融合
下载PDF
基于DAPA的卷积神经网络Web异常流量检测方法 被引量:3
8
作者 高胜花 李世明 +2 位作者 李秋月 於家伟 郑爱勤 《信息技术与网络安全》 2020年第2期8-12,共5页
针对Web攻击流量检测问题,提出一种基于动态自适应池化算法(Dynamic Adaptive Pooling Algorithm,DAPA)的卷积神经网络模型。首先将数据集中每一条请求流量进行剪裁、对齐、补足等操作,生成一系列50×150的矩阵数据A作为输入,然后... 针对Web攻击流量检测问题,提出一种基于动态自适应池化算法(Dynamic Adaptive Pooling Algorithm,DAPA)的卷积神经网络模型。首先将数据集中每一条请求流量进行剪裁、对齐、补足等操作,生成一系列50×150的矩阵数据A作为输入,然后搭建基于动态自适应的卷积神经网络模型去进行异常流量检测,使之可以根据特征图的不同,动态地调整池化过程,在网络结构中添加Dropout层来解决流量特征提取过程中的过拟合问题。实验表明,该方法比未使用动态自适应池化的方式精确度提升了1.2%,损失值降低了2.6%,过拟合问题也得到了解决。 展开更多
关键词 异常流量检测 卷积神经网络 动态自适应池化
下载PDF
基于多通道融合多尺度自适应残差学习的行星齿轮箱故障诊断研究
9
作者 陈奇 陈长征 安文杰 《机电工程》 CAS 北大核心 2023年第7期1031-1038,共8页
针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态... 针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态调整,自适应提取了单通道数据的局部和全局特征;其次,通过将MSDAC与残差学习结合,提升了模型的学习能力;最后,采用MC-MSDAR将多通道数据的多尺度特征进行了融合,输入到SoftMax层,实现了故障识别与分类。研究结果表明:基于MC-MSDAR的方法进行行星齿轮箱故障诊断的准确率为97%,验证了该方法的有效性;通过与其他深度学习方法进行对比,该方法具有更好的泛化能力。 展开更多
关键词 故障诊断 风电机组 行星齿轮箱 残差学习 多尺度学习 多尺度动态自适应卷积神经网络
下载PDF
一种多尺度的图像动态场景盲去模糊网络 被引量:3
10
作者 唐述 万盛道 +4 位作者 谢显中 杨书丽 黄容 顾佳 郑万鹏 《软件学报》 EI CSCD 北大核心 2022年第9期3498-3511,共14页
近几年,基于卷积神经网络(convolutional neural network, CNN)的单幅图像动态场景盲去模糊(single image dynamic scene blind deblurring, SIDSBD)方法已经取得了巨大的进步.其成功主要是源于多尺度模型或者多块模型、编解码器架构的... 近几年,基于卷积神经网络(convolutional neural network, CNN)的单幅图像动态场景盲去模糊(single image dynamic scene blind deblurring, SIDSBD)方法已经取得了巨大的进步.其成功主要是源于多尺度模型或者多块模型、编解码器架构的设计和残差块结构的设计3个方面.基于此,提出了一种新的多尺度卷积神经网络(multiscale convolutional neural network, MSCNN)来进一步开发多尺度模型、编解码器架构和残差块结构的优势,以实现更高质量的动态场景盲去模糊.首先,受到空间金字塔池化(spatial pyramid pooling, SPP)和多块模型的启发,提出了一种分等级的多块通道注意力机制(hierarchical multi-patch channel attention, HMPCA).提出的HMPCA通过利用特征图的全局特征统计量和局部特征统计量来自适应地对特征图进行逐通道的权重赋值.因为利用了局部信息,因此HMPCA可以被认为是增加了通道方向的感受野,也正因如此,提出的HMPCA能够进一步增强网络的表达能力.其次,不同于现有的多尺度模型,发展出了一种新的多尺度模型,该模型中的每个尺度是由多个编码器和多个解码器构成的.因为HMPCA,使得同一尺度内的编码器和解码器并不完全相同,因此提出的多尺度模型可以被看作是增加了编解码器的深度,因此能够提升每一个尺度的去模糊性能,最终实现更高质量的动态场景盲去模糊.大量的实验结果表明:提出的方法较近几年的一些成功的SIDSBD方法相比,能够复原出更高质量的去模糊图像,在客观的评价指标和主观的视觉效果上均有显著的改进. 展开更多
关键词 卷积神经网络 动态场景盲去模糊 多尺度模型 通道注意力机制 空间金字塔池化
下载PDF
基于多尺度分量特征学习的用户级超短期负荷预测
11
作者 臧海祥 陈玉伟 +4 位作者 程礼临 朱克东 张越 孙国强 卫志农 《电网技术》 EI CSCD 北大核心 2024年第6期2584-2592,I0093-I0098,共15页
针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mod... 针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)以及变分模态分解(variational mode decomposition,VMD)的自适应二次模态分解框架,捕捉周期性等时序特征,并降低其非平稳特性;采用多维特征融合的方式挖掘各本征模态函数之间的耦合关系,丰富特征信息;利用改进的多尺度空间注意力(multiscale spatial attention,MSA)模块沿时间、空间以及通道等多尺度提取时空特征及多分量间耦合关系,进而便于卷积神经网络(convolutional neural network,CNN)学习多分量特征。基于江苏省南京市房地产业、教育业以及商务服务业共12位用户的实际负荷数据进行算例分析,各行业平均绝对百分误差分别为5.82%、4.54%以及8.78%,与效果最好的对照模型相比,分别降低了10.46%、6%以及7.48%,验证了该文模型具有较高的预测精度和良好的泛化性能。 展开更多
关键词 负荷预测 卷积神经网络 自适应二次模态分解 多尺度空间注意力机制
下载PDF
动态感受野特征选择去雾网络 被引量:1
12
作者 查俊伟 张洪艳 《电子科技》 2023年第7期56-63,共8页
基于深度学习的去雾模型大多在网络参数固定后,感受野也就随之固定。这导致去雾网络无法针对每个具体的场景采用最优的模式进行去雾,从而造成结果中存在模糊和失真。针对这些问题,文中提出动态感受野特征选择去雾网络。该网络以带有空... 基于深度学习的去雾模型大多在网络参数固定后,感受野也就随之固定。这导致去雾网络无法针对每个具体的场景采用最优的模式进行去雾,从而造成结果中存在模糊和失真。针对这些问题,文中提出动态感受野特征选择去雾网络。该网络以带有空洞卷积的特征注意力空洞模块为基础组件,并行使用多个空洞率不同的特征注意力空洞模块来提取多尺度特征,并进行动态特征融合,构成动态感受野模块。文中将多个动态感受野模块搭配残差连接组成深度网络,对不同层次的特征进行动态混合,最终解码得到去雾图像。实验结果表明,文中所提算法对室内和室外的合成雾图以及真实含雾图像均具有良好的去雾效果,可以生成清晰、自然的去雾图像。 展开更多
关键词 图像去雾 动态感受野 多尺度特征 动态特征融合 空洞卷积 自注意力机制 动态神经网络 动态参数
下载PDF
适用于图像超分辨率的多路径融合增强网络 被引量:1
13
作者 沈俊晖 薛丽霞 +1 位作者 汪荣贵 杨娟 《微电子学与计算机》 2024年第3期59-70,共12页
卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解... 卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解决该问题,设计了一种轻量级的图像超分辨率重建网络——多路径融合增强网络(Multi-path Fusion Enhancement Network,MFEN)。具体来说,提出了一个新颖的融合注意力增强模块(Fusion Attention Enhancement Block,FAEB)作为多路径融合增强网络的主要构建模块。融合注意力增强模块由一条主干分支和两条层级分支构成:主干分支由堆叠的增强像素注意力模块组成,负责对特征图实现深度特征学习;层级分支则负责提取并融合不同大小感受野的特征图,从而实现多尺度特征学习。层级分支的融合方式则是以相邻的增强像素注意力模块输出为分支输入,通过自适应注意力模块(Self-Adaptive Attention Module,SAAM)来动态地增强不同大小感受野特征的融合程度,进一步补全特征信息,从而实现更全面、更精准的特征学习。大量实验表明,该多路径融合增强网络在基准测试集上具有更高的准确性。 展开更多
关键词 多路径融合增强网络 轻量化图像超分辨率重建 多尺度特征融合 自适应注意力 卷积神经网络
下载PDF
基于多表示动态自适应的不同工况下滚动轴承故障诊断
14
作者 朱继扬 孙虎儿 +2 位作者 张天源 赵扬 白晓艺 《机电工程》 CAS 北大核心 2023年第2期178-185,203,共9页
在对不同工况下的滚动轴承进行故障诊断时,要收集足够多标记的故障样本是非常困难的。为此,以原始振动信号作为神经网络的输入,通过多表示动态自适应(MRDA)算法多表示对齐可迁移的特征、自适应动态的衡量边缘分布和条件分布相对重要性,... 在对不同工况下的滚动轴承进行故障诊断时,要收集足够多标记的故障样本是非常困难的。为此,以原始振动信号作为神经网络的输入,通过多表示动态自适应(MRDA)算法多表示对齐可迁移的特征、自适应动态的衡量边缘分布和条件分布相对重要性,从而构建了一种新的深度迁移模型,即一维多表示空洞动态自适应迁移网络(1D MRDDATN)。首先,对迁移学习数据分布进行了问题分析,对DDA进行了理论推导;然后,在一维空洞卷积基础上,创建了一维多表示空洞卷积神经网络(1D MRDCNN),并提出了MRDA算法和多表示动态自适应结构(MRDAM),形成了一维多表示空洞动态自适应迁移网络(1D MRDDATN);最后,采用美国凯斯西储大学(CWRU)的滚动轴承数据集进行了实验验证。研究结果表明:与传统的深度迁移学习方法相比,上述方法的平均诊断准确率有所提升,可达到98%以上;MRDA通过多表示对齐来完成不同工况下的跨域分类任务,自适应地捕获不同方面的信息,可以获得更好的性能。 展开更多
关键词 不同工况 一维多表示空洞动态自适应迁移网络 故障样本 深度迁移学习 多表示动态自适应算法 神经网络 一维多表示空洞卷积神经网络
下载PDF
基于区域自适应多尺度卷积的单声道语音增强算法 被引量:1
15
作者 王钇翔 吕忆蓝 +2 位作者 台文鑫 孙建强 蓝天 《计算机应用研究》 CSCD 北大核心 2021年第11期3264-3267,共4页
卷积神经网络的感受野大小与卷积核的尺寸相关,传统的卷积采用了固定大小的卷积核,限制了网络模型的特征感知能力;此外,卷积神经网络使用参数共享机制,对空间区域中所有的样本点采用了相同的特征提取方式,然而带噪频谱图噪声信号与干净... 卷积神经网络的感受野大小与卷积核的尺寸相关,传统的卷积采用了固定大小的卷积核,限制了网络模型的特征感知能力;此外,卷积神经网络使用参数共享机制,对空间区域中所有的样本点采用了相同的特征提取方式,然而带噪频谱图噪声信号与干净语音信号的分布存在差异,特别是在复杂噪声环境下,使得传统卷积方式难以实现高质量的语音信号特征提取和过滤。为了解决上述问题,提出了多尺度区域自适应卷积模块,利用多尺度信息提升模型的特征感知能力;根据对应采样点的特征值自适应地分配区域卷积权重,实现区域自适应卷积,提升模型过滤噪声的能力。在TIMIT公开数据集上的实验表明,提出的算法在语音质量和可懂度的评价指标上取得了更优的实验结果。 展开更多
关键词 语音增强 卷积神经网络 多尺度卷积 区域自适应
下载PDF
多尺度视角特征动态融合的盗窃犯罪预测模型 被引量:1
16
作者 石拓 张齐 石磊 《智能系统学报》 CSCD 北大核心 2022年第6期1104-1112,共9页
针对盗窃犯罪时空预测特征融合不精、时序动态适应性不足问题,提出自注意力和多尺度多视角特征动态融合的预测模型。首先,以盗窃发案的位置信息为基础,将数据投射到地图栅格内,通过构建一种可将不同时序长度案件数据匹配为自适应长度数... 针对盗窃犯罪时空预测特征融合不精、时序动态适应性不足问题,提出自注意力和多尺度多视角特征动态融合的预测模型。首先,以盗窃发案的位置信息为基础,将数据投射到地图栅格内,通过构建一种可将不同时序长度案件数据匹配为自适应长度数据的方法,并组合向量映射后的天气、作案时间、地理位置等属性,构造多维度特征融合的输入向量;其次,采用自注意力机制生成多视角特征动态融合的向量;最后,通过采用多尺度窗口CNN对多视角特征动态融合向量进行编码后送入分类器,预测出每个地图栅格内的发案态势。在某市盗窃数据集上验证,本文方法在3种地理栅格尺度下,预测准确率最高可达到0.899,显著优于其他对比模型。 展开更多
关键词 犯罪预测 自注意力机制 多尺度特征融合 卷积神经网络 动态自适应 分类器 时序预测 分布式表征
下载PDF
结合域对抗自适应的刀具磨损预测方法 被引量:1
17
作者 董靖川 谭志兰 +1 位作者 王太勇 武晓鑫 《机械科学与技术》 CSCD 北大核心 2023年第2期165-172,共8页
数控加工中存在刀具几何误差及安装误差、刀具及工件材料性能的随机波动等因素,导致刀具之间的磨损过程与监测信号上存在较大差异的问题,使得刀具磨损值难以精确预测。为此,本文提出了一种结合域对抗自适应的多尺度分布式卷积长短时记... 数控加工中存在刀具几何误差及安装误差、刀具及工件材料性能的随机波动等因素,导致刀具之间的磨损过程与监测信号上存在较大差异的问题,使得刀具磨损值难以精确预测。为此,本文提出了一种结合域对抗自适应的多尺度分布式卷积长短时记忆网络模型(Multiscale time-distributed convolutional long short-term memory,MTDCLSTM)。将加工过程中采集到的多传感器信号作为模型输入,通过域分类器与预测器之间的对抗学习,提取出可有效表征刀具磨损且与域无关的多尺度时空特征,经预测器的非线性映射,实现对刀具磨损值的精确预测。实验结果表明,结合域对抗自适应的MTDCLSTM模型预测性能明显优于分布式卷积神经网络、长短时记忆网络、卷积神经网络与支持向量机模型。与基于迁移成分分析的支持向量回归模型相比,本文模型的均方根误差与平均绝对误差分别降低了59.8%和62.5%,决定系数提高了66.1%,可有效缩小刀具个体之间的差异,提高磨损值预测精度。 展开更多
关键词 刀具磨损 域对抗自适应 多尺度时空特征 分布式卷积神经网络 长短时记忆网络
下载PDF
基于多尺度融合卷积神经网络的熔解曲线有效性分类
18
作者 李向军 涂洁莹 赵志宾 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第3期633-639,共7页
针对熔解曲线图像中峰值分类的问题,提出了一种基于多尺度融合的卷积神经网络(CNN)分类模型。首先,将通过空洞卷积获取到的多尺度上下文信息与残差模块提取到的特征信息相融合,弥补了深层网络丢失全局信息的缺点。不同于传统卷积采用单... 针对熔解曲线图像中峰值分类的问题,提出了一种基于多尺度融合的卷积神经网络(CNN)分类模型。首先,将通过空洞卷积获取到的多尺度上下文信息与残差模块提取到的特征信息相融合,弥补了深层网络丢失全局信息的缺点。不同于传统卷积采用单一卷积核的方式,本文使用了一种卷积核的权值随输入而变化的动态滤波器,从而提高了网络学习的准确性。此外,为了提高模型的泛化能力,本文创建了熔解曲线的数据集,其中包括平衡数据集和不平衡数据集。将6个基于深度学习的分类方法与本文方法进行比较,结果表明本文方法在客观评价指标上明显优于其他方法。 展开更多
关键词 图像分类 卷积神经网络 多尺度融合 熔解曲线 动态滤波器
原文传递
不同池化模型的卷积神经网络学习性能研究 被引量:80
19
作者 刘万军 梁雪剑 曲海成 《中国图象图形学报》 CSCD 北大核心 2016年第9期1178-1190,共13页
目的基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方... 目的基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。 展开更多
关键词 深度学习 卷积神经网络 图像识别 特征提取 算法收敛 动态自适应池化
原文传递
动态奇异值网络的三维模型识别
20
作者 罗文劼 张涵 +1 位作者 倪鹏 田学东 《小型微型计算机系统》 CSCD 北大核心 2020年第3期532-538,共7页
卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化... 卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化分块、自适应SVD(Singular Value Decomposition)分解和维度压缩三部分组成,通过分块后的子区域极大地关注三维模型的局部特征,并用自适应的方法判断每个局部特征的影响大小,最后维度压缩去除较小影响的数值.动态奇异值网络是将这三部分作为卷积神经网络的后端,形成一个端对端(end to end)可训练的三维模型特征提取框架.与当今先进方法相比,在ModelNet40数据集上的分类和检索结果分别提升了1. 2%和0. 8%,在ModelNet10和ModelNet40的Top-10平均检索精度分别提高了3. 7%和4%. 展开更多
关键词 三维模型识别 卷积神经网络 动态奇异值 自适应视图融合
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部