期刊文献+
共找到1,552篇文章
< 1 2 78 >
每页显示 20 50 100
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究 被引量:2
1
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 多尺度特征
下载PDF
全尺度密集卷积U型网络的视网膜血管分割算法
2
作者 夏平 何志豪 +2 位作者 雷帮军 彭程 王雨蝶 《计算机工程与设计》 北大核心 2024年第3期866-873,共8页
针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks... 针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks, CCF-DB)作为U型网络的编解码器用以提取视网膜血管的特征信息;在网络最底端嵌入混合注意力级联卷积密集块(mixed attention cascaded convolutional dense block, MACC-DB),进一步提升感受野,获取更高维的语义特征信息;在模型的解码部分采用全尺度的跳跃连接,捕获不同尺度下的血管特征信息,提升模型的分割精度。实验结果表明,在DRIVE数据集上,相比于U-Net、U-Net3+、SA-Unet、FR-Unet等算法,此算法的AUC值达到了98.26%,准确率为95.82%;在CHASE-DB1数据集上,此算法的AUC值达98.84%,准确率达96.66%。采用此算法进行视网膜血管分割,分割的精度和鲁棒性均有不同程度的提升,对细小血管分割达到了优良的效果。 展开更多
关键词 医学图像分割 深度学习 视网膜血管分割 尺度密集卷积 编解码结构 混合注意力 级联卷积
下载PDF
结合混合卷积和多尺度注意力的视频异常检测算法
3
作者 杨大为 刘志权 王红霞 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1128-1137,共10页
基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素... 基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素级别的差异而无法捕捉图像的结构特征。对此提出了结合混合卷积和多尺度注意力的视频异常检测算法,并加入结构相似性损失函数(SSIM)优化模型。具体来说,在编码器最后一层添加混合卷积模块,混合空间和位置的特征来提取全局上下文信息。在编码器和解码器之间的跳跃连接中添加多尺度注意力模块,使模型能提取更有价值的特征,实现有效的跳跃连接。使用参数约束结构相似性损失函数与L2损失函数的权重,从而更准确地优化模型。实验结果表明,所提算法在UCSD-Ped2和CUHK Avenue公开数据集上的AUC指标达到96.7%和86.1%,与改进前的模型相比提高了1.6%和1.4%,证明了所提模型的有效性。 展开更多
关键词 上下文信息 跳跃连接 混合卷积 多尺度注意力 结构相似性
下载PDF
多尺度融合卷积的轻量化Transformer无人机地物识别模型
4
作者 肖斌 罗浩 +2 位作者 张恒宾 刘宏伟 张兴鹏 《郑州大学学报(理学版)》 CAS 北大核心 2024年第1期32-39,共8页
Transformer模型性能优越,但其巨大的参数量不适合资源受限的无人机遥感任务。为此,提出一种用于无人机遥感图像的多尺度融合卷积的轻量化Transformer模型,通过设计三种优化策略来提高精度以及减少参数量。首先,设计了一种轻量级多尺度... Transformer模型性能优越,但其巨大的参数量不适合资源受限的无人机遥感任务。为此,提出一种用于无人机遥感图像的多尺度融合卷积的轻量化Transformer模型,通过设计三种优化策略来提高精度以及减少参数量。首先,设计了一种轻量级多尺度融合卷积方法,补充Transformer丢失的块内空间信息,从而有效提取多尺度上的粗、细粒度特征表示。其次,设计了多尺度缩减键值序列的方式,优化Transformer中的自注意力计算。最后,设计了轻量级的MLP解码器,进一步减少模型参数量。在Vaihingen和Potsdam数据集上与一些主流模型进行了对比实验,结果表明,所提模型的F 1值和交并比均有所提升。同时,在Potsdam数据集上准确度提升0.29%,参数量比双分支网络STransFuse减少18%。 展开更多
关键词 无人机遥感影像 TRANSFORMER 语义分割 轻量级 多尺度 卷积神经网络
下载PDF
基于多尺度半耦合卷积稀疏编码的遥感地貌影像纹理识别方法
5
作者 王忠丰 范宝国 《计算机测量与控制》 2024年第10期284-290,共7页
遥感地貌影像通常包含大量的数据,具有高度的复杂性和多样性,难以捕捉到不同层次的纹理信息,从而影响识别效果;因此,为提高纹理特征提取的效果,确保识别精度,采用多尺度半耦合卷积稀疏编码对遥感地貌影像纹理识别进行了研究;去除遥感地... 遥感地貌影像通常包含大量的数据,具有高度的复杂性和多样性,难以捕捉到不同层次的纹理信息,从而影响识别效果;因此,为提高纹理特征提取的效果,确保识别精度,采用多尺度半耦合卷积稀疏编码对遥感地貌影像纹理识别进行了研究;去除遥感地貌影像噪声,增强遥感地貌影像整体质量,通过分水岭算法分割遥感地貌影像,探究不同尺度下遥感地貌影像纹理特征区别,以有效捕捉到不同层次的纹理信息,提高遥感地貌影像纹理的识别性能;然后应用灰度共生矩阵(GLCM)获取遥感地貌影像的多尺度纹理特征,构建半耦合卷积稀疏编码模型,完成多尺度纹理特征提取过程的学习与多尺度纹理特征的有效融合,以能够在保持特征丰富性的同时,减少冗余信息,提高纹理识别的准确性;选取适当的分类器——朴素贝叶斯分类器,并对其进行训练;并以此为基础,制定遥感地貌影像纹理识别程序,执行制定程序即可获取地貌纹理识别结果;测试结果显示:应用提出方法获得的遥感地貌影像处理结果清晰度与对比度较高,地貌纹理特征提取结果更加完整与清晰,地貌纹理识别结果与实际结果一致,充分证实了提出方法应用效果更好。 展开更多
关键词 多尺度纹理特征 影像分割 半耦合结构 遥感地貌影像 卷积稀疏编码 纹理识别
下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究
6
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
下载PDF
基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断 被引量:2
7
作者 韩康 战洪飞 +1 位作者 余军合 王瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1285-1295,共11页
传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模... 传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模型(DC-MAFFM).利用空洞卷积的大感受野提取信号特征,同时引入残差连接来减少卷积层上的信息损失,从而有效过滤信号中的噪声;设计改进的多尺度特征提取模块,在不同尺度上捕获互补的诊断特征,同时在各层都进行不同尺度特征融合,充分学习信号的高频和低频特征;利用提出的特征自适应融合模块对不同尺度的特征自适应赋予权重,增强判别特征学习的能力.在2个轴承数据集上进行验证,结果表明所提模型在噪声和变工况下有较强的诊断能力.在强噪声情况下,故障诊断准确率分别达到88.08%和75.56%,与其他方法相比有显著优势. 展开更多
关键词 故障诊断 空洞卷积 残差连接 多尺度特征提取 自适应融合
下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:2
8
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉Transformer 多尺度特征 融合网络
下载PDF
基于多尺度空洞卷积结构的路面裂缝分割方法 被引量:2
9
作者 何宇超 段中兴 高静 《公路交通科技》 CAS CSCD 北大核心 2024年第1期1-9,17,共10页
为了实现道路裂缝的自动化检测,改善现有裂缝分割模型存在分割不连续与嘈杂背景误分割等问题,提出了一种基于多尺度空洞卷积结构的裂缝分割模型MAC-UNet。以UNet作为基础网络,首先提出了多尺度空洞卷积结构,替换编码器与解码器中的双卷... 为了实现道路裂缝的自动化检测,改善现有裂缝分割模型存在分割不连续与嘈杂背景误分割等问题,提出了一种基于多尺度空洞卷积结构的裂缝分割模型MAC-UNet。以UNet作为基础网络,首先提出了多尺度空洞卷积结构,替换编码器与解码器中的双卷积结构,提升了网络对复杂拓扑结构的分割性能。然后,构建了交叉注意力机制,使用金字塔注意力模块代替编、解码器之间的跳跃连接,保留因池化丢失的空间特征。增加通道注意力引导多尺度信息,有效地融合到解码器特征中,使得恢复裂缝时,细节更加丰富,定位更准确。最后,在道路裂缝数据集CFD和GAPS384上与FCN、PSPNet等5种方法进行试验对比,相较于UNet,在CFD数据集上,MIOU和Kappa系数分别提升了8.4%和8.52%。在GAPS384数据集上,分别提升了6.84%和8.23%,对于道路裂缝的分割更加清晰与完整。结果表明:与主流的分割算法相比,所提出算法的识别精度方面具有较明显的优势,在光照不均匀、各种噪音干扰、背景灰度水平不同的情况下,所提模型仍然能够获取稳定的检测结果,能够应对复杂裂缝分割问题,并且可视化裂缝检测误差较小,符合实际工程需求,且模型体积较小,具有一定的工程应用价值。 展开更多
关键词 道路工程 裂缝识别 深度学习 道路裂缝 空洞卷积 多尺度特征
下载PDF
多尺度卷积神经网络融合Transformer的竹材缺陷识别方法
10
作者 杨松 张锐 朱良宽 《林业工程学报》 CSCD 北大核心 2024年第5期126-133,共8页
在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率... 在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率。该方法在卷积神经网络的主干上进行改进,从获取不同尺度语义信息的角度出发,首先利用卷积神经网络在不同尺度的特征图上捕捉图像局部语义信息,然后将不同尺度的语义特征映射为特征符号,同时引入Sinkhorn分词器对不同阶段的卷积神经网络特征符号化以减少特征冗余,再通过Transformer对特征符号之间的关系进行建模以学习图像全局语义信息。试验结果表明,与VGG16、ResNet50、DenseNet121、ViT这4种深度学习模型相比,基于多尺度卷积神经网络融合Transformer的方法能够更高效地提高竹材缺陷识别模型的性能,在竹材缺陷图像数据集上的平均识别准确率达到了99.13%。该方法识别速度更快、精度更高,且具有良好的鲁棒性,为竹材缺陷的实时自动识别提供了新思路,同时也验证了所提出方法的有效性。 展开更多
关键词 竹材缺陷识别 多尺度 卷积神经网络 TRANSFORMER Sinkhorn分词器
下载PDF
基于多尺度卷积的胶囊网络知识图谱嵌入模型
11
作者 周淑霄 王艳娜 +2 位作者 周子力 王妍 董兆安 《曲阜师范大学学报(自然科学版)》 CAS 2024年第2期93-99,共7页
该文基于胶囊神经网络出色的维度信息挖掘能力,加入多尺度卷积以进一步增强其特征提取和交互能力,提出了基于多尺度卷积的胶囊网络知识图谱嵌入模型.首先,通过TransE算法训练得到实体和关系的初始化嵌入向量;其次,通过多尺度卷积生成不... 该文基于胶囊神经网络出色的维度信息挖掘能力,加入多尺度卷积以进一步增强其特征提取和交互能力,提出了基于多尺度卷积的胶囊网络知识图谱嵌入模型.首先,通过TransE算法训练得到实体和关系的初始化嵌入向量;其次,通过多尺度卷积生成不同的特征图,将得到的特征图进行特征融合,融合后得到的特征图重组为相对应的胶囊;最后,利用动态路由指定从第一层胶囊到第二层胶囊的连接,经过路由得到的第二层胶囊利用squash函数得到最终向量长度,该向量长度决定三元组的置信度.知识图谱链接预测任务的实验结果表明,较嵌入模型CapsE,本文提出的模型在WN18RR数据集上指标Hit@10提高1.8%,MRR提高1.4%,在FB15k-237数据集上Hit@10提高2.2%,MR提高4.8%. 展开更多
关键词 知识图谱 多尺度卷积 胶囊网络 知识图谱嵌入 神经网络
下载PDF
基于多尺度时间卷积网络的多模态过程故障诊断方法
12
作者 阳少杰 里鹏 +1 位作者 李帅 周晓锋 《计算机应用与软件》 北大核心 2024年第6期108-114,127,共8页
针对工业过程故障诊断面临的多模态、多尺度等混合特性问题,提出一种基于多尺度时间卷积网络的故障诊断方法。考虑到过程数据的多模态分布特性,采用基于余弦相似度的局部近邻标准化方法处理过程数据以消除多模态特性;针对过程数据的多... 针对工业过程故障诊断面临的多模态、多尺度等混合特性问题,提出一种基于多尺度时间卷积网络的故障诊断方法。考虑到过程数据的多模态分布特性,采用基于余弦相似度的局部近邻标准化方法处理过程数据以消除多模态特性;针对过程数据的多尺度特性,使用变分模态分解获取数据的多尺度表示,对各分量构建采用注意力机制的时间卷积网络模型提取特征,并融合多尺度特征,以实现多尺度特征提取;在特征提取的基础上使用全连接层实现故障诊断。通过田纳西-伊斯曼(Tennessee-Eastman,TE)过程仿真实验验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 多模态过程 时间卷积网络 多尺度特征提取 局部近邻标准化
下载PDF
基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法
13
作者 蒲宝林 张卫华 蒲亦非 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期203-213,共11页
当前模板匹配算法中,基于灰度的模板匹配算法具有较好的稳定性和鲁棒性.但是对于大型图像和复杂模板,它可能需要大量的计算资源和时间.此外,在应对目标尺度变化较大时,基于灰度的模板匹配算法匹配效果较差.对于NCC算法自身速度较慢的问... 当前模板匹配算法中,基于灰度的模板匹配算法具有较好的稳定性和鲁棒性.但是对于大型图像和复杂模板,它可能需要大量的计算资源和时间.此外,在应对目标尺度变化较大时,基于灰度的模板匹配算法匹配效果较差.对于NCC算法自身速度较慢的问题,本文对NCC算法进行了改进,减少了平均36%的匹配时间.为了应对多尺度的问题,本文结合卷积神经网络,提出了基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法.其中,在一阶段目标检测阶段,本文在YOLOX算法的基础上改进了主干网络和损失函数,改善了算法的计算速度以及匹配成功率,并利用一阶段目标检测的结果使二阶段NCC算法动态调整模板大小,极大地减少了NCC算法大规模制作模板时间,最终使得整体匹配精度远远高于传统基于灰度的模板匹配算法. 展开更多
关键词 模板匹配 多尺度 卷积神经网络 两阶段 YOLOX
下载PDF
基于多尺度卷积的阅读理解候选句抽取
14
作者 李沫谦 杨陟卓 +2 位作者 李茹 王笑月 吉宇 《中文信息学报》 CSCD 北大核心 2024年第8期128-139,157,共13页
机器阅读理解作为检验机器是否具有理解人类自然语言能力的重要任务之一,受到了越来越广泛的关注。该文针对选择型阅读理解任务中特征提取不全面和交互不充分的问题,提出一种基于多尺度卷积的候选句抽取模型。首先,使用预训练模型编码... 机器阅读理解作为检验机器是否具有理解人类自然语言能力的重要任务之一,受到了越来越广泛的关注。该文针对选择型阅读理解任务中特征提取不全面和交互不充分的问题,提出一种基于多尺度卷积的候选句抽取模型。首先,使用预训练模型编码句子语义信息,并利用多种特征辅助编码提升模型性能。其次,为了充分利用文本信息,采用多尺度卷积捕捉不同尺度的文本特征。再次,使用Focal Loss解决阅读理解中正负样本不均衡的问题,最后,选取top-20作为候选句。该文的方法在两个阅读理解选择题数据集上进行测试,实验结果表明,多尺度卷积模型效果优于基线模型,F1值较最优基线模型结果分别提升3.66%和4.82%,验证了方法的有效性。 展开更多
关键词 机器阅读理解 候选句抽取 多尺度卷积
下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法
15
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别
16
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
下载PDF
融合多尺度卷积和侧窗滤波的HY-1C CZI云检测方法
17
作者 王新念 马毅 +3 位作者 刘荣杰 崔学荣 赵鑫 葛化鑫 《海洋科学进展》 CAS CSCD 北大核心 2024年第1期102-115,共14页
海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(Coastal Zone Imager, CZI)具有大幅宽、短重访周期的优势,可实现海洋和海岸带的大面积观测。作为光学传感器,CZI受云影响严重,准确识别云是CZI数据处理的关键,但... 海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(Coastal Zone Imager, CZI)具有大幅宽、短重访周期的优势,可实现海洋和海岸带的大面积观测。作为光学传感器,CZI受云影响严重,准确识别云是CZI数据处理的关键,但是CZI缺少红外和短波红外等对云敏感的波段,云检测难度大。针对该问题,本文提出一种融合多尺度卷积和侧窗滤波的轻量化云检测方法,该方法通过多尺度卷积获取云的不同尺度特征,通过侧窗滤波突出边缘特征,减少椒盐噪声的影响,提升云边缘检测的精度。实验结果表明,本文所提出的方法可有效进行云检测,在云边缘提取方面表现较好,F1-score达92.77%,Kappa系数达0.89,与现有云检测方法相比优势明显,且模型训练速度快、参数量少,可为HY-1C CZI遥感影像处理提供有力支撑。 展开更多
关键词 HY-1C CZI 多尺度卷积 侧窗滤波 云检测
下载PDF
多尺度多任务注意力卷积神经网络滚动轴承故障诊断方法
18
作者 王照伟 刘传帅 +1 位作者 赵文祥 宋向金 《电机与控制学报》 EI CSCD 北大核心 2024年第7期65-76,共12页
针对振动信号时间尺度不一、故障特征分布差异及信息冗余等问题,提出一种多尺度多任务注意力卷积神经网络(MSTACNN)的滚动轴承故障诊断方法。首先,在参数共享单元构建多尺度卷积神经网络,提取多任务之间共享信息的多尺度通用特征;其次,... 针对振动信号时间尺度不一、故障特征分布差异及信息冗余等问题,提出一种多尺度多任务注意力卷积神经网络(MSTACNN)的滚动轴承故障诊断方法。首先,在参数共享单元构建多尺度卷积神经网络,提取多任务之间共享信息的多尺度通用特征;其次,利用多任务学习机制对故障类型、故障尺寸以及运行工况同时训练,规避单任务学习效率低下问题;然后,采用注意力机制对多尺度特征信息进行筛选,识别并保留有效特征;最后,设计了一种自适应损失权重算法,动态调整子任务的损失权重,控制不同任务的学习进度,实现了对轴承故障类型、故障尺寸以及运行工况同时识别的目标。在西储大学数据集和帕德博恩大学数据集分别对方法有效性进行验证,其中故障类型的识别准确率分别达到了99.95%和98.41%。实验结果表明,所提方法均展现出较高的识别准确率、良好的收敛速度和稳定性,具有较强的特征提取学习能力和泛化性能。 展开更多
关键词 多尺度卷积 注意力机制 多任务学习 自适应损失权重 故障诊断
下载PDF
基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪
19
作者 陈仁祥 潘升 +2 位作者 杨黎霞 王建西 夏天 《铁道学报》 EI CAS CSCD 北大核心 2024年第5期123-131,共9页
针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,... 针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,并克服单尺度卷积特征不够精细导致缺陷边缘模糊的问题;其次利用跳跃连接融合网络深层特征和浅层特征,强化浅层特征影响,克服因网络加深导致浅层特征被忽略的问题,使特征更充分;然后利用注意力机制调节特征在空间不同位置的权重,筛选出能表征噪声的特征,获得噪声信息;最后通过重建模块去除含噪图像中的噪声,实现端到端的降噪。试验结果从定性和定量角度证明所提方法不仅降噪效果更好,且更有效地保留了缺陷边缘信息,为缺陷精确分割提供条件。 展开更多
关键词 钢轨表面缺陷 图像降噪 卷积神经网络 多尺度特征
下载PDF
基于多尺度时空卷积的唇语识别方法
20
作者 叶鸿 危劲松 +3 位作者 贾兆红 郑辉 梁栋 唐俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4170-4177,共8页
现有的唇语识别模型大多采用将单层的3维卷积与2维卷积神经网络结合的方式,从唇语视频序列中挖掘出时空联合特征。然而,由于单层的3维卷积不能很好地提取时间信息,同时2维卷积神经网络对细粒度的唇语特征的挖掘能力有限,该文提出一种多... 现有的唇语识别模型大多采用将单层的3维卷积与2维卷积神经网络结合的方式,从唇语视频序列中挖掘出时空联合特征。然而,由于单层的3维卷积不能很好地提取时间信息,同时2维卷积神经网络对细粒度的唇语特征的挖掘能力有限,该文提出一种多尺度唇语识别网络(MS-LipNet)以改善唇语识别任务。该文在Res2Net网络中,采用3维时空卷积替代传统的2维卷积以更好地提取时空联合特征,同时提出时空坐标注意力模块,使网络关注于任务相关的重要区域特征。在LRW和LRW-1000数据集上进行实验,验证了所提方法的有效性。 展开更多
关键词 唇语识别 多尺度时空卷积网络 Res2Net 时空坐标注意力 数据增强
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部