针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo...针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。展开更多
海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(Coastal Zone Imager, CZI)具有大幅宽、短重访周期的优势,可实现海洋和海岸带的大面积观测。作为光学传感器,CZI受云影响严重,准确识别云是CZI数据处理的关键,但...海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(Coastal Zone Imager, CZI)具有大幅宽、短重访周期的优势,可实现海洋和海岸带的大面积观测。作为光学传感器,CZI受云影响严重,准确识别云是CZI数据处理的关键,但是CZI缺少红外和短波红外等对云敏感的波段,云检测难度大。针对该问题,本文提出一种融合多尺度卷积和侧窗滤波的轻量化云检测方法,该方法通过多尺度卷积获取云的不同尺度特征,通过侧窗滤波突出边缘特征,减少椒盐噪声的影响,提升云边缘检测的精度。实验结果表明,本文所提出的方法可有效进行云检测,在云边缘提取方面表现较好,F1-score达92.77%,Kappa系数达0.89,与现有云检测方法相比优势明显,且模型训练速度快、参数量少,可为HY-1C CZI遥感影像处理提供有力支撑。展开更多
文摘针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。
文摘海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(Coastal Zone Imager, CZI)具有大幅宽、短重访周期的优势,可实现海洋和海岸带的大面积观测。作为光学传感器,CZI受云影响严重,准确识别云是CZI数据处理的关键,但是CZI缺少红外和短波红外等对云敏感的波段,云检测难度大。针对该问题,本文提出一种融合多尺度卷积和侧窗滤波的轻量化云检测方法,该方法通过多尺度卷积获取云的不同尺度特征,通过侧窗滤波突出边缘特征,减少椒盐噪声的影响,提升云边缘检测的精度。实验结果表明,本文所提出的方法可有效进行云检测,在云边缘提取方面表现较好,F1-score达92.77%,Kappa系数达0.89,与现有云检测方法相比优势明显,且模型训练速度快、参数量少,可为HY-1C CZI遥感影像处理提供有力支撑。