期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
跨尺度跨维度的自适应Transformer网络应用于结直肠息肉分割
被引量:
2
1
作者
梁礼明
何安军
+1 位作者
李仁杰
吴健
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第18期2700-2712,共13页
针对结直肠息肉图像病灶区域尺度变化大、边界模糊、形状不规则且与正常组织对比度低等问题,导致边缘细节信息丢失和病灶区域误分割,提出一种跨尺度跨维度的自适应Transformer分割网络。该网络一是利用Transformer编码器建模输入图像的...
针对结直肠息肉图像病灶区域尺度变化大、边界模糊、形状不规则且与正常组织对比度低等问题,导致边缘细节信息丢失和病灶区域误分割,提出一种跨尺度跨维度的自适应Transformer分割网络。该网络一是利用Transformer编码器建模输入图像的全局上下文信息,多尺度分析结直肠息肉病灶区域。二是通过通道注意力桥和空间注意力桥减少通道维度冗余和增强模型空间感知能力,抑制背景噪声。三是采用多尺度密集并行解码模块来填补各层跨尺度特征信息之间的语义空白,有效聚合多尺度上下文特征。四是设计面向边缘细节的多尺度预测模块,以可学习的方式引导网络去纠正边界错误预测分类。在CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS数据集上进行实验,其Dice相似性系数分别为0.942,0.932,0.811和0.805,平均交并比分别为0.896,0.883,0.731和0.729,其分割性能优于现有方法。仿真实验表明,本文方法能有效改善结直肠息肉病灶区域误分割,具有较高的分割精度,为结直肠息肉诊断提供新窗口。
展开更多
关键词
结直肠息肉
TRANSFORMER
多尺度密集并行解码模块
多尺度
预测
模块
下载PDF
职称材料
多分辨率融合输入的U型视网膜血管分割算法
被引量:
6
2
作者
梁礼明
詹涛
+2 位作者
雷坤
冯骏
谭卢敏
《电子与信息学报》
EI
CSCD
北大核心
2023年第5期1795-1806,共12页
针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代...
针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代替传统卷积,优化血管分割边界特征;将并行空间激活模块嵌入其中,捕获更多的语义和空间信息。构架另一U型精细分割网络,提高模型的微观表示和识别能力。一是底层采用多尺度密集特征金字塔模块提取血管的多尺度特征信息。二是利用特征自适应模块增强粗、细网络之间的特征融合,抑制不相关的背景噪声。三是设计面向细节的双重损失函数融合,以引导网络专注于学习特征。在眼底数据用于血管提取的数字视网膜图像(DRIVE)、视网膜结构分析(STARE)和儿童心脏与健康研究(CHASE_DB1)上进行实验,其准确率分别为97.00%,97.47%和97.48%,灵敏度分别为82.73%,82.86%和83.24%,曲线下的面积(AUC)值分别为98.74%,98.90%和98.93%。其模型整体性能优于现有算法。
展开更多
关键词
视网膜血管分割
U型网络
并行
空间激活
模块
多尺度
密集
特征金字塔
模块
双重损失函数融合
下载PDF
职称材料
题名
跨尺度跨维度的自适应Transformer网络应用于结直肠息肉分割
被引量:
2
1
作者
梁礼明
何安军
李仁杰
吴健
机构
江西理工大学电气工程及其自动化学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第18期2700-2712,共13页
基金
国家自然科学基金资助项目(No.51365017,No.61463018)
江西省自然科学基金面上项目资助(No.20192BAB205084)
江西省教育厅科学技术研究重点项目资助(No.GJJ170491,No.GJJ2200848)。
文摘
针对结直肠息肉图像病灶区域尺度变化大、边界模糊、形状不规则且与正常组织对比度低等问题,导致边缘细节信息丢失和病灶区域误分割,提出一种跨尺度跨维度的自适应Transformer分割网络。该网络一是利用Transformer编码器建模输入图像的全局上下文信息,多尺度分析结直肠息肉病灶区域。二是通过通道注意力桥和空间注意力桥减少通道维度冗余和增强模型空间感知能力,抑制背景噪声。三是采用多尺度密集并行解码模块来填补各层跨尺度特征信息之间的语义空白,有效聚合多尺度上下文特征。四是设计面向边缘细节的多尺度预测模块,以可学习的方式引导网络去纠正边界错误预测分类。在CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS数据集上进行实验,其Dice相似性系数分别为0.942,0.932,0.811和0.805,平均交并比分别为0.896,0.883,0.731和0.729,其分割性能优于现有方法。仿真实验表明,本文方法能有效改善结直肠息肉病灶区域误分割,具有较高的分割精度,为结直肠息肉诊断提供新窗口。
关键词
结直肠息肉
TRANSFORMER
多尺度密集并行解码模块
多尺度
预测
模块
Keywords
colcorectal polyps
transformer
multi-scale dense parallel decoding module
multi-scale pre⁃diction module
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
多分辨率融合输入的U型视网膜血管分割算法
被引量:
6
2
作者
梁礼明
詹涛
雷坤
冯骏
谭卢敏
机构
江西理工大学电气工程与自动化学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第5期1795-1806,共12页
基金
国家自然科学基金(51365017,61463018)
江西省自然科学基金面上项目(20192BAB205084)
江西省教育厅科学技术研究重点项目(GJJ170491)。
文摘
针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代替传统卷积,优化血管分割边界特征;将并行空间激活模块嵌入其中,捕获更多的语义和空间信息。构架另一U型精细分割网络,提高模型的微观表示和识别能力。一是底层采用多尺度密集特征金字塔模块提取血管的多尺度特征信息。二是利用特征自适应模块增强粗、细网络之间的特征融合,抑制不相关的背景噪声。三是设计面向细节的双重损失函数融合,以引导网络专注于学习特征。在眼底数据用于血管提取的数字视网膜图像(DRIVE)、视网膜结构分析(STARE)和儿童心脏与健康研究(CHASE_DB1)上进行实验,其准确率分别为97.00%,97.47%和97.48%,灵敏度分别为82.73%,82.86%和83.24%,曲线下的面积(AUC)值分别为98.74%,98.90%和98.93%。其模型整体性能优于现有算法。
关键词
视网膜血管分割
U型网络
并行
空间激活
模块
多尺度
密集
特征金字塔
模块
双重损失函数融合
Keywords
Retinal vessel segmentation
U-shaped network
Parallel space activation module
Multiscale dense feature pyramid module
Double loss function fusion
分类号
R318 [医药卫生—生物医学工程]
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
跨尺度跨维度的自适应Transformer网络应用于结直肠息肉分割
梁礼明
何安军
李仁杰
吴健
《光学精密工程》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
2
多分辨率融合输入的U型视网膜血管分割算法
梁礼明
詹涛
雷坤
冯骏
谭卢敏
《电子与信息学报》
EI
CSCD
北大核心
2023
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部